

Mikkel Viager

Detection and tracking of
people and moving objects

Bachelor’s Thesis, January 2011

Mikkel Viager

Detection and tracking of
people and moving objects

Bachelor’s Thesis, January 2011

 Detection and tracking of people and moving objects Mi 5

 Mikkel Viager, January 2011

Abstract

The goal of this project has been to develop a software solution capable of detecting

and tracking humans in the immediate environment of mobile robots. Limitations are

imposed: only a single laser scanner (a.k.a. range finder) may be used and the final

product must be compatible with the Mobotware framework. In compliance with

these demands, the chosen solution has been created as a plugin running directly in

the Mobotware framework, analyzing data on shapes in the environment to separate

human legs from static objects. Through multiple experiments with use in both simu-

lated and real environments, capabilities and limitations are revealed to provide a

good evaluation of reliability. Detection capability is shown to be high in terms of de-

tecting most humans, but tends to wrongfully include leg-shaped static objects as

well. Tracking capability is shown to be highly dependable on both environmental

noise conditions and the scan rate of the laser scanner; this leads to a review showing

how good results can be expected from the most commonly used scan rates. The

project concludes with two examples of implementation in robotics control, utilizing

both detection and tracking capabilities and demonstrating the usability of the plugin

in real-world applications. With documentation in focus, the developed solution is

easily implementable right away and also leaves the option for further expansion and

development.

6 Detection and tracking of people and moving objects
.

Mikkel Viager, January 2011

Resumé
Målet med dette projekt har været at udvikle en software-løsning som er i stand til at

detektere og spore mennesker i mobile robotters umiddelbare omgivelser. Der er stil-

let krav om kun at anvende en enkelt laserscanner, samt at det færdige produkt skal

være kompatibelt med Mobotware strukturen. Under efterlevelse af disse krav er den

valgte løsning udviklet som et plugin der kører direkte i Mobotware, med hvilket der

analyseres data som beskriver former i omgivelserne, for at udskille menneskelige ben

fra statiske objekter. Gennem adskillige eksperimenter med anvendelse i både simule-

rede og virkelige miljøer, er evner og begrænsninger fundet for at give et klart billede

af pålideligheden. Detektions-evnen vises at være god til at detektere de fleste men-

nesker, men har en tendens til fejlagtigt at markere ben-formede genstande også.

Sporings-evnen vises at være betydeligt afhængig af både støj i omgivelserne, og

scan-raten for den anvendte laser scanner, hvilket fører til en gennemgang af hvilke

resultater der kan forventes med de mest almindelige scan-rater. Projektet konklude-

res med to eksempler på anvendelse i kontrol af mobile robotter, hvorved det under

anvendelse af både detektering og sporing demonstreres hvorledes plugin’et kan an-

vendes i virkelige problemstillinger. Med fokus på dokumentationen er den udviklede

løsning klar til implementering med det samme, og inkluderer samtidig en mulighed

for videre udvidelse og udvikling.

 Detection and tracking of people and moving objects Mi 7

 Mikkel Viager, January 2011

Table of Contents
1. Introduction .. 9

2. Thesis statement .. 11

2.1 Problem ... 11

2.2 Limitations .. 12

2.3 Solution functionality .. 12

2.4 Levels of success ... 13

2.5 Documentation overview .. 14

3. Design ... 15

3.1 Sensors .. 15

3.2 Mobotware and plugins ..17

4. Implementation .. 19

4.1 Plugin approach .. 19

4.1.1 Handling raw data .. 20

4.1.2 Storing information .. 21

4.1.3 Subsequent scan-data linking .. 22

4.1.4 Visualization of results ... 23

4.1.5 Interface and Availability of information ... 24

4.2 Plugin overview ... 25

4.2.1 Functionality ... 25

4.2.2 Expandability .. 25

5. Results .. 27

5.1 The SMR-Platform ... 27

5.2 Simulation ... 28

5.2.1 Stage ... 28

5.2.2 Simulation results ... 29

5.3 Real world .. 31

5.3.1 Humans .. 31

5.3.2 Environment ... 32

5.3.3 Calibration parameters .. 34

5.3.4 Real-world results .. 34

8 Detection and tracking of people and moving objects
.

Mikkel Viager, January 2011

5.3.5 Noise Sources ... 35

5.4 Application and usability ... 36

5.5 Proof of concept ...37

5.5.1 Follow nearest .. 37

5.5.2 Follow best ... 38

5.5.3 Follow VIP ... 38

5.6 Further work.. 39

6. Conclusion .. 41

Appendix A ... 43

A-1 Flow Diagram ... 43

A-1.1 Sorting of raw data .. 44

A-1.2 The “Leg” class .. 44

A-1.3 Subsequent scan-data linking .. 45

A-1.4 Visualization of results ... 45

A-1.5 Interface and availability of information .. 46

Appendix B ... 47

Appendix C ... 49

References.. 51

CD Contents ... 53

Developed C++ code ... 55

follow_nearest (SMRCL-code) .. 55

follow_VIP (SMRCL-code) ... 56

ufuncpplfinder.h ... 58

ufuncpplfinder.cpp .. 60

urespplfinder.h.. 70

urespplfinder.cpp ...71

Leg.h ... 72

Leg.cpp ..73

zimino_PDetection.h .. 75

zimino_PDetection.cpp .. 76

 Detection and tracking of people and moving objects Mi 9

 Mikkel Viager, January 2011

1. Introduction

All around the world, robots are being introduced in many new tasks and fields of op-

eration every day. These applications include everything from very simple interactions

to highly sophisticated maneuvering. Common to all of them is the need to interact

with a somewhat dynamic environment, which often includes the requirement to act

properly in direct contact with humans.

Many stationary robots used for industrial purposes are shielded from direct contact

with humans and from as many non-predictive influences as possible. This is possible

because the robots are only required to complete a single task consecutively, and

therefore don’t need the ability to counteract changes in the predefined environment.

The only behavior needed is simplified down to an emergency stop of the robot as

soon as any unexpected event occurs. While this is a viable solution for stationary ro-

bots, this approach leads to highly undesirable behavior if used with mobile robots.

Mobile robots need to successfully navigate dynamic environments, in addition to

completing certain tasks by interacting with objects in these environments. Prediction

of any obstacles and changes in a robot’s environment is required to provide a com-

plete set of behavioral rules for the robot to follow. Unfortunately such a set of rules

can never be constructed to include actions for every single change in the real world,

which is detectable by the many sensors available. To achieve similar but highly sim-

plified behavior, the decisions made are based on only a few key elements in the envi-

ronment, which are relevant to each action completed. As an example, if a mobile

robot is instructed to drive through a door, follow a wall or move from A to B, it

searches for predefined shape-features of a doorway in its environment to use as

guide marks.

Making correct decisions in controlling mobile robots requires availability of correct

and continuously updated environmental data. To improve reliability, it is advanta-

geous to compare and merge data obtained from several types of sensors, to create a

more detailed model of the environment.

The prototype “Iromec” shown in Figure 1

is an example of a mobile robot carrying

out decision making based directly on hu-

man behavior. This robot has been devel-

oped to help teach mentally impaired child-

ren how to interact with other humans.

Providing much simplified and easily read-

able emotional responses to many kinds of

Figure 1: The Iromec Prototype

10 Detection and tracking of people and moving objects
.

Mikkel Viager, January 2011

physical interactions, this robot helps to establish an understanding of how to notice

and handle the basic rules of communication [1].

Using both laser scanners and a camera to detect and track its surroundings, the robot

can achieve great detail in the information gathered on its surroundings [2].

A common part of a mobile robot development process is the need to create new and

platform-specific software for every new robot-type or design. Even though many

physical concepts, such as steering and basic structure, are similar among many ro-

bots, component-specific drivers may vary, requiring significant restructuring for any

pre-made software to be compatible. In an attempt to avoid this problem, an adaptive

software package for mobile control called “Mobotware” is being developed at the

Institute of Automation and Control, DTU (Technical University of Denmark).

Providing the option to keep high and low level software apart (high level: behavior

control. Low level: hardware control), this platform is useable with a great variety of

robots. To make a new robot type compatible with Mobotware, only the hardware

control has to be re-configured, making all previously developed high level software

directly usable. This great advantage allows the continuous addition of new functio-

nalities to the platform, in the form of results from research projects carried out at the

institute. With no need to recreate the low level implementation, focus can be kept on

development of high level control functionality.

This thesis is the documentation from completion of such a project, with the goal to

further develop the capabilities of Mobotware and contribute with useful functionali-

ties to the existing platform.

 Detection and tracking of people and moving objects Mi 11

 Mikkel Viager, January 2011

2. Thesis statement

Development of any new piece of software is always limited and slowed by the neces-

sity to create secondary tools and methods, in order to complete a primary task. Tak-

ing up time which could have been used to further develop and improve a main func-

tionality, these side-developments are desirably kept to a minimum.

On the other hand, a large set of secondary tools and methods will allow a main pro-

gram to achieve more sophisticated behavior, and depend on a broader variety of ex-

ternal factors.

2.1 Problem

For future development of software for the Mobotware platform, it is desired to ex-

pand the collection of ready-made and easy-to-use tools in the form of plugins, capa-

ble of running directly in the framework. These tools should provide future developers

with the ability to use high level sensor-based information, without having to handle

the lower level analysis of raw sensor data.

The most desirable kind of information for operating a mobile robot is information on

its environment, such as immediate surroundings and localization. With this informa-

tion it is possible to make better decisions, as they are backed up by analyses of the

current situation. Most navigation algorithms for mobile robots don’t distinguish hu-

mans from static obstacles when calculating optimal paths from A to B. Instead, the

capability to handle disturbances in an otherwise static map can be used to conti-

nuously re-evaluate decisions, based on changes in the environment. If data on the

location of humans in an environment was directly available in an easy-to use form,

such information could be used in several ways to improve both future and existing

mapping and localization algorithms. Examples of such uses could be: mapping algo-

rithms completely filtering out humans, localization algorithms ignoring humans

when doing positioning, or direct use of human positions to successfully navigate and

avoid collisions in highly populated environments.

Such considerations form the ambition behind this project, and the problem at hand

can thus be formulated as:

There is no implementation in Mobotware allowing easy-to-use (high-level) localization-

information on humans in the immediate environment of mobile robots. Without such

information the quality of mapping and localization done in any environments involving

humans is far from optimal, due to the disturbances caused by the presence of untreated

moving obstacles and inability to act properly on human movement and behavior.

12 Detection and tracking of people and moving objects
.

Mikkel Viager, January 2011

2.2 Limitations

For seamless integration with the existing implementation, a set of limitations has

been defined by the researchers and developers in charge of Mobotware:

• Only sensor data from a laser scanner may be used for all detection purposes.

• The solution must be in the form of a “plugin” compatible with the Mobotware

platform (portable to other platforms using this framework)

• Predefined standards for internal communication in Mobotware should be

used. (callGlobal and XML-like replies as explained in chapter 4.1.5)

In addition, hardware available at the institute in the form of mobile robots and laser

scanners are to be used for development and experiments, as these are considered to

be the primary clients in future use. This also encourages a laser scanner placement

around the average human knee height or below, in order to support the current

structure of the robots.

2.3 Solution functionality

To successfully provide a solution to the problem, while staying within the boundaries

of the given limitations, the desired primary functionalities are considered to be:

Primary functionality:

• Plugin providing simple (high-level) information on human positions in the en-

vironment, based on data from a laser scanner.

Secondary functionality:

• Ability to keep track of, and distinguish between, individual humans.

• Configurability for use under varying environment conditions.

• Easy-to-use: simple to load, configure and run.

Furthermore, examples of use for the final solution are highly desirable as documenta-

tion for future users of the plugin, as well as obtaining conclusive results for the

project.

 Detection and tracking of people and moving objects Mi 13

 Mikkel Viager, January 2011

2.4 Levels of success

To explain the desired goal of achievement, three acceptable levels of successful out-

come are chosen. These are used as guidelines through the development, as well as in

the final conclusions in chapter 6.

Basic level of success:

The developed plugin should be capable of determining immediate po-

sitions of humans, making this information directly available to other

Mobotware processes.

High level of success:

The developed plugin should be capable of determining immediate po-

sitions of humans, as well as keep track of each person after initial de-

tection. Configuration for the tracking should be easily adjustable, and

all position information should be easily available for direct use in other

plugins as well as in XML-like format for use with SMRCL.

Highest level of success:

The developed plugin should be capable of determining immediate po-

sitions of humans, as well as keep track of each person after initial de-

tection. Configuration for the tracking should be easily adjustable, and

all position information should be easily available for direct use in other

plugins as well as in XML-like format for use with SMRCL. As a proof-of-

concept and guidelines for future use, examples on how to make use of

the provided positional data should be developed, tested and docu-

mented.

14 Detection and tracking of people and moving objects
.

Mikkel Viager, January 2011

2.5 Documentation overview

Documentation of both implementation and test results can be found in the following

chapters, where concepts and methods are described in detail. Alternative versions of

several sub-chapters can be found in Appendix A. These are meant to target C++ pro-

grammers and for use with future maintenance or development of the plugin.

Chapter 3 evaluates the given limitations and the impacts hereof.

Chapter 4.1 focuses on the basic concepts in terms of designing the plugin structure.

Chapter 4.2 provides a short overview of the chosen functionalities, while going

through the approaches for implementation.

In the final part of the report, test results for use in both simulated and real

world environments are presented and evaluated.

Chapter 5.1 briefly introduces the “Small Mobile Robot” platform used during tests.

Chapter 5.2 presents and evaluates results from use of the plugin in a simulated envi-

ronment.

Chapter 5.3 presents and evaluates results from operation in real-world environ-

ments, as well thoughts on experienced noise sources.

Chapter 5.4 provides two implemented cases utilizing the new functionality made

available with the plugin, along with the results and final evaluation hereof.

Chapter 5.5 suggests additional options of usability for the plugin in other applica-

tions.

Chapter 6 concludes the project by evaluating the implemented functionality, test

results, and the overall level of success achieved.

 Detection and tracking of people and moving objects Mi 15

 Mikkel Viager, January 2011

3. Design

Based on the limitations given, considerations are made to determine the options to

solve the problem, and whether the limitations cause significant disability to use oth-

erwise advantageous designs.

3.1 Sensors

Mobotware includes implementation allowing the use of both vision (cameras) and 2D

laser scanners for obstacle sensing. Since mobile robots are designed in many varie-

ties, the sensor software is made to scale along with the robot and its sensors. Despite

project limitations to the use of a laser scanner, a brief comparison to a vision-based

alternative is considered.

Whereas a camera provides a good overview of the environment directly in front of

the robot, it is limited to a viewing angle of approximately 60o, depending on the lens.

Furthermore, any distance calculations based on a single camera are dependent on

knowledge about the size of the object beforehand. A setup with stereo cameras

could work for depth determinations, but the viewing angle would still be limited as

can be seen from the example in Figure 2.

Figure 2: example of a camera view

Many 2D laser scanners are capable of doing measurements in a 240o angle with a

distance capability of 4m or more. This however comes at the price of only knowing

the distance to objects and an outline of their shape. The picture in Figure 3 illustrates

a viewing angle of 180o, which is attainable with most laser scanners.

16 Detection and tracking of people and moving objects
.

Mikkel Viager, January 2011

Figure 3: Merge of 5 pictures taken from the same origin. Green overlay is approximate laser-scan.

Even when provided with only the distances to objects from a horizontal laser-scan, it

is possible to determine many features in the surroundings, as shown in Figure 4.

Figure 4: The resulting laserscan (240

o
) of the environment from Figure 3.

It is seen that detecting items of the color black is problematic for the laser scanner.

The impacts hereof are considered in chapter 5.3.2.

The laser scanner creates a set of points in a coordinate system by measuring the dis-

tance between the laser scanner and obstacles blocking a transmitted laser beam.

Measuring the time interval between sending out and detecting the returning reflec-

tion of the laser beam, allows calculation of the distance to an obstacle. Knowing the

angle in which the measurement was made, makes it possible to place the point in a

coordinate system relative to the sensor. Repeating this in an entire sweep of mea-

surements with approximately 1o resolution or less, a map of the entire environment is

created.

With a much wider angle of operation than the camera, as well as easily available and

generally reliable distance measurements of high precision, the laser scanner is a via-

ble choice for use in solving the problem.

 Detection and tracking of people and moving objects Mi 17

 Mikkel Viager, January 2011

3.2 Mobotware and plugins

The Mobotware system is focused on development and expansion through plugins,

and includes several ways to share information between these. As the control of ro-

bots using Mobotware is divided into several interdependent parts (servers), which are

each controlling the handling of a sensor, behavior or hardware, plugins can be devel-

oped to fit a corresponding server. Camera-based feature extraction is done from the

camera server, laser-based feature extraction from the laser server, and behavior-

related actions from the behavior server [3].

Since the task at hand is sensor-oriented (based on information procurement, and

action passive) and should be solved using only the laser scanner, it is highly beneficial

to do the implementation as a plugin for the laser scanner server; “ulmsserver”. The

entire implementation approach is described in chapter 4.

 Detection and tracking of people and moving objects Mi 19

 Mikkel Viager, January 2011

4. Implementation
Many considerations are undertaken during development of new software. This chap-

ter provides an overview of the choices made during implementation of the plugin.

The first choice is to name it “pplfinder”.

4.1 Plugin approach

The basic requirement of the plugin is to receive and analyze data from a laserscanner

(as previously illustrated in Figure 4), making key information about positions of hu-

mans easily available for use wherever needed.

In terms of structuring, the backbone of the plugin handles all communication with

external processes and activates corresponding internal procedures when information

is requested. This approach makes it possible to implement an informative user inter-

face (UI), requiring no advanced knowledge about the plugins internal structure from

the user.

In order to only use as little processing power as possible, the plugin behavior is cho-

sen to be based on an idle state while waiting for external requests to act. This ap-

proach allows future users to decide how processing power can be distributed most

efficiently in their application, instead of having to incorporate predefined timing in-

tervals. Thus, the plugin always return to the idle state after completing a given task.

The main task is to run the entire detection procedure: obtain new laser data, extract

data on legs, compare with result from previous scan, merge and save these two as a

new resulting data set, and finally update the user-accessible information accordingly.

Secondary tasks are to provide specific pieces of information when requested, while

making sure to convert this information to be interpretable by the requester. The

three kinds of requesters are;

• Human console input (for development)

• Plugin-to-plugin (handling both “callGlobal” and “callGlobalV” method calls)

• SMRCL-scripts (requiring an XML-like reply format).

In the following five sub-chapters, approaches chosen to complete the desired tasks

are explained. For a quick overview of the chosen design, a diagram illustrating the

flow of actions can be found in Appendix A-1.

20 Detection and tracking of people and moving objects
.

Mikkel Viager, January 2011

4.1.1 Handling raw data

Each time the command ”run” is issued, a complete analysis of the most recent laser

scan is carried out.

 As every laser scan contains up to several hundred points defining the general shapes

of obstacles in an environment, the idea is to analyze these shapes and extract those

similar to human legs into separate clusters. The shape of a human leg is usually simi-

lar to that of a cylinder, resulting in what appears to be around 1/3

or 1/2 the circumference of a circle on the laser scan, as shown in

the top of Figure 5 (These clusters are taken from the auclient,

making it hard to see the individual points, because of the history-

functionality fading out old points instead of having them disap-

pear instantly).

As the four bottom examples in Figure 5 shows, it is not always

easy to predict the shapes created by the fabric of clothes. Pants

often have a much larger diameter than the leg wearing them,

causing them to bend into folds and odd shapes. Because of this, it

is not a viable solution to find legs by comparing shapes to a piece

of a perfect circular circumference.

Utilizing knowledge about general sizes of human legs along with

commonly expected features in terms of shape, an algorithm implemented in a pre-

vious master’s thesis by Daniel Muhle-Zimino [4] has proved to provide very reasona-

ble results for dividing and finding leg-shaped clusters.

Unfortunately, this algorithm was only integrated for use in one specific control case,

and is not directly usable in any other applications. In order to make use of the algo-

rithm, it has been extracted from the original implementation and modified to match

the new requirements by 2 major modifications:

• Originally the algorithm wrote calculation results to a file. This has been

changed to transfer all data internally.

• The coordinate system in which the results were previously calculated, was

relative to the laser scanner. A translation and coordinate transformation has

been introduced to have the results expressed in terms of world-coordinates.

The final implementation receives and handles the scan data by dividing all given

points into clusters, and evaluating the number of points in each. Clusters with too

few or too many points do not match the size of a leg, and are discarded. Any remain-

ing clusters are then evaluated by their shape. If the middle point in a cluster is the one

closest to the scanner, along with the two end points in the same cluster both being

Figure 5: examples

of results for occur-

ring leg shapes.

 Detection and tracking of people and moving objects Mi 21

 Mikkel Viager, January 2011

located further away than this, the object would appear to have a uniform shape and

is considered to be a human leg. When all clusters have been analyzed, the algorithm

has completed its task and the results are sent back to the main part of the plugin.

The implementation is done in a way which allows easy substitution of the algorithm,

should the current one prove to have undesirable limitations or in case any improved

version is developed at a later point.

Further details on the modifications of the algorithm can be found in Appendix A-1.1.

4.1.2 Storing information

Detailed information about each leg is saved for as long as the leg is considered to be

present in the scan area (the chosen approach takes advantage of the object oriented

C++ language, as described in Appendix A-1.2).

The data received for storage is the coordinate values of several points defining each

leg. Instead of storing all this information, it is considered sufficient to store only the

mean X and Y values of the points as an acceptable approximation for the location.

Additional information stored for each leg:

• ID-number (unique generated ID identifying this leg)

• Scan-ID (ID of the laser scan in which this leg was detected)

• Timestamp (specific time for detection of this leg, in unix-time)

• Point count (the number of points detected as defining this leg)

• Certainty (measure for likeliness of this actually being a leg)

• Position History (the entire history of positions since discovery of this leg)

The ID-number, scan-ID and timestamp are used for identification purposes, and point

count along with position history is only stored for availability in further development

of pplfinder. Details on the possible uses for these are explained in chapter 4.2.2.

Most important of the additional information is the certainty, which is used to rate the

likeliness of the detected object actually being a leg and allowing “wildcards”. This is

explained in the following chapter.

22 Detection and tracking of people and moving objects
.

Mikkel Viager, January 2011

4.1.3 Subsequent scan-data linking

For each sweep of the laser scanner, several legs from a previous scan are very likely

to re-occur. This is due to a relatively high scan rate of 0.2 seconds or better (depend-

ing on the laser scanner). By always saving information from the most recent scan,

comparison and possible matching of legs between scans can be done for every

sweep. All positions of new legs are compared to positions of the previous ones, in

search for any matches. A match is found when the distance between a new leg and

the position of a previous leg is below a certain threshold. Should more than one leg

qualify as a match, the closest one is chosen. When a match is made, all data saved in

the previous leg is transferred to the new one, including the unique ID.

When a new leg is detected it gets a certainty value of 1. This value then increases by

+1 every time the leg is successfully matched and reduced by -1 every time no match is

made. Removing all legs with a certainty value of less than 1 makes it possible to han-

dle a moderate amount of errors in readings and detection. Should one sweep fail to

detect certain legs due to corrupted data, as a result of interference from noise

sources in the real world, legs with high certainty can “survive” for several sweeps until

hopefully being rediscovered.

This approach uses the certainty value to allow errors in the readings to some extent.

Should the detection of a leg fail because of noise, the history of that leg should not

necessarily be deleted right away. By using the certainty rating as a wildcard, it is

possible to re-match lost legs that have been undetectable for a short time.

It is however important to set a maximum value for the certainty, to match the speed

of the laser scanner in use. Using unreasonably large values of certainty might result in

non-existing legs remaining as ghost for much longer time than reasonable, and they

may even end up being “picked-up” as other legs passing by at a later time.

Thus, the maximum value of certainty should be set high enough to prevent loss of

legs due to noise, but not so high that other legs are able to get within range and be

mistaken for the lost one.

Adjustments can also be made by changing the acceptable matching distance, as ex-

plained in chapter 5

 Detection and tracking of people and moving objects Mi 23

 Mikkel Viager, January 2011

4.1.4 Visualization of results

With information on any legs considered to be currently visible, a way of visualizing

these is desirable for debugging purposes as well as future development and use of

pplfinder. Utilizing the pre-made plugin “aupoly”, it is possible to visualize polygons

on the laser-scan display of the auclient. As all data for the current laser scan is already

shown, an overlay of leg positions is added in the form of circular polygons of various

colors, as shown in Figure 6.

Figure 6: Laser scan data visualized in the auclient with leg positions overlaid.

Thin blue lines mark the world-coordinate system, green circles represents the raw

laser scan data, and the red marks indicate the path history for robot movement. The

detected legs are marked with colored circles and a polygon-number.

Colors are also used to illustrate the certainty level of each leg. Red indicates a leg

with certainty 1, which has either just been discovered or is about to be lost. Blue ones

are for all certainties between 1 and the chosen maximum value, and finally the color

black indicates a certainty of the highest value allowed.

These color codes provides a good overview of the detection performance in real

time, making it very intuitive to understand and adjust the configuration parameters

for maximum certainty and matching distance.

24 Detection and tracking of people and moving objects
.

Mikkel Viager, January 2011

4.1.5 Interface and Availability of information

Even though the use of data for visualization is advantageous for a human user, the

most important is to make the data available for use in other applications and thereby

making sure that key information is accessible in a form where it can be used directly.

How the output should be formatted depends on the type of client requesting it. For

use with Mobotware there are three types of clients: humans, other plugins, and

SMRCL-scripts.

The kind of information desired by a human is somewhat satisfied with the visual re-

presentation. However, in some cases it is advantageous to have access to the num-

bers behind this, providing many details in precise numerical values. Even though this

approach to data retrieval will never be used in final autonomous solutions, it is an

important tool for development and maintenance of the plugin. To satisfy this need,

all important information can be requested and shown directly in the console of the

ulmsserver, including: current values for the calibration parameters, the amount of

legs currently in view, ID for the nearest leg and detailed information on any leg by

providing its ID.

For plugin-to-plugin communication a special method is used in all parts of Mobot-

ware, defining a standardized way of implementation to follow. Meeting these re-

quirements, pplfinder has the capability to communicate as defined by the standard

(with implementation for both callGlobal and callGlobalV method calls). Basic infor-

mation can be read directly in “public” read-only variables, and detailed information

on specific legs is delivered per request.

As the most basic way of creating autonomous solutions with the Mobotware plat-

form is to create scripts written in SMRCL, this is an important aspect to support. Be-

cause of a different syntax for passing information, additional communication options

have been created for use with SMRCL (formatted as XML-like replies).

A helpful overview of the interface is accessible with the help-function directly in the

console, and can also be found in Appendix A-1.5.

 Detection and tracking of people and moving objects Mi 25

 Mikkel Viager, January 2011

4.2 Plugin overview

Providing a brief summary of the final implementation in its entirety, this sub-chapter

evaluates the main aspects in future use of pplfinder.

4.2.1 Functionality

The primary functionality achieved is the ability to process data from a laser-scan

sweep; detecting, tracking and storing information on human legs, as well as making

this information available for easy use as a tool in future research and development of

the Mobotware platform.

The pplfinder plugin also includes the possibility to recognize specific legs through

several separate scans, based on adjustable configuration values. Being configurable

to match various hardware specifications and environments, the portability of Mo-

botware along with this plugin is not made any less favorable.

With focus on ease-of-use, the chosen interface includes both an informative help-

function, reasonable initial values for all configuration variables, implementation in-

cluding warnings and errors for troubleshooting, intuitive real-time visualization of

results, as well as extensive compatibility with other plugins and usability in SMRCL-

scripts. Along with the programming oriented explanations of functionality found in

the appendixes of this report, a good basis for the future maintenance and use of the

pplfinder plugin has been established.

4.2.2 Expandability

Storing information that is not used in the current functionalities of pplfinder, is done

to provide an option for continued development of the plugin. Additionally, the cho-

sen structure of software allows an optional use with alternative algorithms for detec-

tion of any shapes, by replacing the current algorithm and using the plugin as a

framework.

As an example, the position history could be used to further improve recognition of

legs in consecutive scans. Knowing several recent positions of a leg, it would be possi-

ble to estimate movement direction and speed, providing valuable information to the

control software for prediction of future obstacle positions and collisions.

 Detection and tracking of people and moving objects Mi 27

 Mikkel Viager, January 2011

5. Results
Testing of the plugin has been carried out in two phases. As part of the development

process, a simulation environment has been used to eliminate errors and bugs. Using

a simulated environment makes it possible to notice even small implementation er-

rors, which could have been overlooked in real world test where noise is present.

When functioning as intended in the simulations, the next step was to use a real robot

in a real-world environment. In the field of mobile robotics, this is often the most criti-

cal part of testing, as the introduction of numerous noise sources often results in a far-

from ideal usage of the theory-based solution implemented.

5.1 The SMR-Platform

The platform used in all test is the Small Mobile Robot (SMR). The SMR is the com-

mon development platform used for courses and projects at the department of auto-

mation and control at the Technical University of Denmark (DTU), as it is small and

differential controlled, which is advantageous for indoor navigation. A laser scanner is

mounted in front of the robot, along with several

other sensors (which won´t be used by pplfinder).

The option to use other robots and laser scanners

at a later time is available, since the plugin is com-

patible with any robot using Mobotware.

The laser scanner is a “Hokuyo URG-04LX” [5], al-

lows scans of up to 240o angle with 4m range and is

usually mounted only a few centimeters above the

ground on a SMR. However, as the plugin is devel-

oped to handle scans of legs (not feet), the laser

scanner has been repositioned to 20cm above the

ground, as can be seen in Figure 7. This reposition

includes a vertical flip resulting in mirroring of the

collected scan data. To cancel this undesired error,

it is important to make a correction in the

ulmsserver initialization file (which should be set to

“scanset mirror=false” as the scanner is no

longer positioned upside-down).

A close-up image of the scanner placement can be found in Appendix B.

Figure 7: Small Mobile Robot (SMR) with

repositioned laser scanner.

28 Detection and tracking of people and moving objects
.

Mikkel Viager, January 2011

5.2 Simulation

Mobotware provides the option to control a virtual robot in a virtual environment. This

functionality builds on a library from the Player/Stage project [6] which is distributed

under the GNU-license. Only the “Stage” part of the project is used here.

5.2.1 Stage

Building environments for use in “Stage” is very intuitive. A bitmap can be used direct-

ly as a template for a 2D environment, scaling the image resolution to a desired envi-

ronment size.

For simulation purposes in relation to this plugin, a 15m x 5m environment consisting

of three 5m x 5m rooms is created. Circles in the bitmap are approximated to resem-

ble the cylindrical shape of human legs, and are placed throughout the three rooms as

shown in Figure 8. The general leg size is set to resemble a diameter of 16cm, and the

small legs to resemble 10cm.

Figure 8: Bitmap file used as a 2D map within the simulator.

Each room is meant to test a different scenario of data collection as a result of human

standing positions. These tests are done within a static environment, but with a mov-

ing robot. Furthermore, the simulated data collection is noise free, and the leg shapes

are perfectly cylindrical.

A video of the entire simulated run-through can be found on the CD, as video 1.

 Detection and tracking of people and moving objects Mi 29

 Mikkel Viager, January 2011

The purposes of the rooms are to test:

Left room: Humans standing close to each other; blocking line-of-sight to another

 person’s leg, as well as making it difficult to decide which leg belongs to

 which human.

Middle room: Humans of different age (leg sizes), in addition to a pair of legs placed

 closely together.

Right room: Humans standing very close to each other, and single humans facing in

 a direction that is not directly towards the robot.

The run function in pplfinder is set to execute sequentially with 0.2 sec interval, mak-

ing all detected legs shows up on the map of laser data.

5.2.2 Simulation results

In summary, the plugin easily locates most of the legs, which is a direct impact of the

detection algorithm expecting legs to be very similar to cylinders. It is however sur-

prising that two legs positioned close together is often detected to be only one leg. In

some cases this would be an acceptable error, since the robot at least knows about the

human presence. The testing also shows that a correction will take place as soon as

the robot has a better angle of detection, as illustrated in Figure 9.

Figure 9: Detection of legs placed close to each other

The results from the left test room show that legs partly covering each other are ac-

ceptable to a certain degree. With this resolution and leg size it is required to have

around ¼ of the circumference detectable. As expected it is impossible to decide

which two legs make a pair, especially when not all legs are visible at the same time.

30 Detection and tracking of people and moving objects
.

Mikkel Viager, January 2011

The right room confirms the theory that it is very plausible for a person to have one

leg cover the other, and that it becomes easier to do so if the person is standing close

to the laser scanner. With regards to the people standing close to each other; all legs

are detected. It does however prove difficult to detect these from some angles, as can

be seen from the simulation video (1) on the CD.

Pictures from the tests in all three rooms can be found in Appendix C

 Detection and tracking of people and moving objects Mi 31

 Mikkel Viager, January 2011

5.3 Real world

Testing the theory in a stationary simulated environment does not provide a very

good basis for final evaluation when the plugin is designed for use in the real world.

Introducing moving persons and a dynamic environment with numerous noise

sources, is the only way to test if pplfinder is actually working as intended. To eva-

luate correctly, an analysis is conducted on the conditions under which the testing is

carried out. Moving humans with legs of varying shape caused by pants, as well as

unwanted wrongful detections of static objects as human legs, is a major issue to han-

dle.

5.3.1 Humans

The average human walking speed is around 5 km/h with a variation of approximately

±1 km/h for young and old individuals. Using the formula; [km/h] / 3.6 = [m/s], and as-

suming that only one leg is moving at a time (which is then twice the human speed),

these movement speeds are converted as shown in Table 1.

Human [km/h] 1.0 2.0 3.0 4.0 5.0 6.0 7.0

Human [m/s] 0.28 0.56 0.83 1.11 1.39 1.67 1.94

Leg [m/s] 0.56 1.11 1.67 2.22 2.78 3.33 3.89

Table 1: Human walking speed conversion chart

Depending on the laser scanner in use, the time taken to do one full scan varies from

approximately 25ms to 120ms.However, due to a compatibility problem in the Linux

drivers for the URG-04LX scanner used in these tests; every second scan contains cor-

rupted data. This lowers the scan rate from a hardware capability of 10 scans per

second to software limited 5 scans per second, until a driver correction is issued by

either the manufacturer or in new distributions of Linux. Comparing common scan

rates to the above leg speeds, the distance moved between each scan can be calcu-

lated as in Table 2 below.

 Leg speed

Scan rate
0.56 m/s 1.11 m/s 1.67 m/s 2.22 m/s 2.78 m/s 3.33 m/s 3.89 m/s

25 ms 0.01 0.03 0.04 0.06 0.07 0.08 0.10

60 ms 0.03 m 0.07 m 0.10 m 0.13 m 0.17 m 0.20 m 0.23 m

80 ms 0.04 m 0.09 m 0.13 m 0.18 m 0.22 m 0.27 m 0.31 m

100 ms 0.06 m 0.11 m 0.17 m 0.22 m 0.28 m 0.33 m 0.39 m

120 ms 0.07 m 0.13 m 0.20 m 0.27 m 0.33 m 0.40 m 0.47 m

200 ms 0.11 m 0.22 m 0.33 m 0.44 m 0.56 m 0.67 m 0.78 m

Table 2: Distance traveled by a leg between two consecutive laser scans.

 Color indicates reliability to be expected for use with pplfinder

32 Detection and tracking of people and moving objects
.

Mikkel Viager, January 2011

The diameter for a leg in pants (below the knee) is approximately 0.16m, which is then

also the distance between the centers of two legs positioned very close to each other.

Considering the scenario that one of these two legs is not detected during a scan, the

maximum distance allowed for “merging” legs in consecutive scans should be below

0.16m, in order to avoid any incorrect matching of one leg as the other. Even though

this threshold can be higher for normal movement (with much longer distance be-

tween the legs), the lowest threshold is the one to use unless a dynamic evaluation

process is designed.

Even though it’s impossible to generalize the size of all human legs, this example can

provide a reasonable scope of what to expect from the tests carried out on the SMR

platform. The coloring of Table 2 visualizes this, and makes it obvious that a solution

to the previously mentioned driver issue would greatly increase performance.

Furthermore, these numbers are based on a simplified model of the real world, not

taking into account that the leg movement between each scan is doubled in the case

of just a single failed detection, as well as the additional distance change caused by

any movement of the mobile robot between scans.

5.3.2 Environment

The real-world environment used to test the plugin is far more varied than the clean

simulation walls. Especially everyday objects shaped as what the detection algorithm

would find to be a human leg, are interesting elements of high relevance and included

in the environment as shown in Figure 10.

Figure 10: Test environment (combination of 4 pictures)

 Detection and tracking of people and moving objects Mi 33

 Mikkel Viager, January 2011

The laser scan obtained at the same position, along with the resulting overlay of sev-

eral pplfinder runs, is shown in Figure 11.

Figure 11: Laser scan for the environment shown in Figure 10

An obvious issue with detection of environments by using a laser scanner, is the prob-

lem of getting readings from black surfaces with a shiny finish. On this scan it shows

on both of the black cans, as well as a black table leg in the right side of the picture. If

a surface is too reflective it works like a mirror and redirects the reflected laser beam

almost completely. If the angle of refraction is not very close to zero, the scanner is

left without any returning beam to do time measuring, and the point is considered as

being out of the 4m scanner range. Since the black cans still cast a “shadow” in the

form of missing points behind them, an approach using mapping of the entire envi-

ronment would still be able to show their presence without any successful readings

directly off their surfaces.

In terms of detection, another problem is also very obvious: the algorithm has found

four legs in an environment containing none. The image in Figure 11 was taken after

several runs of the pplfinder plugin, allowing the certainties to settle. The laser scan of

the top of the soccer ball resembles the outline of a human leg very well, justifying the

choice to regard it as one. It is quite the opposite with both the white and black can,

which are obviously too large or small respectively, to resemble normal human legs.

Even though this seems to be a flaw in the detection algorithm, it is partly justified by

an issue of portability. Depending on the laser scanner in use, the number of points

defining a leg varies with the resolution used. Thus, instead of using a number of

points in a cluster to evaluate upon, a measurement in length should be used in order

34 Detection and tracking of people and moving objects
.

Mikkel Viager, January 2011

to achieve a good portability. As the used algorithm is not designed to be portable,

this is a reasonable flaw.

The flat piece of wall in the back is detected as a leg in only one out of a few scans, as

also indicated by the color. Fortunately this kind of detection doesn’t reach more than

very low certainty ratings, which can be used to filter it from the rest.

Even though it is a problem to have static objects showing up as legs, it is impossible

to completely avoid without using other types of sensors as well. And in the case of

detection errors it is definitely better to mistake objects for being legs, than mistaking

legs for being just objects.

5.3.3 Calibration parameters

Configuration of the calibration parameters is normally done during the initialization,

but the option to adjust the values at any time is also available. If it is chosen to use

dynamic values, any actions towards adjustments should be based on information

from other sources than pplfinder. Since; when the data provided by pplfinder is quali-

fied for making decisions on adjustments, the parameters must then already be per-

fectly adjusted.

In all tests presented in this report, static configuration values have been used. The

values for maximum distance have been chosen in the interval 0.11 – 0.33 m as indi-

cated to be reasonable in Table 2, and maximum certainty values in the range 5 -20

are also considered reasonable, as these resemble 1-4 seconds of subsequent perfect

detections.

5.3.4 Real-world results

The detection-capabilities of pplfinder have proven to work very well in a real-world

environment. Even with strange shapes of pants, the algorithm detects almost all

present legs with each scan, as shown in video 2 on the CD. However, the high detec-

tion rate comes at a price of also evaluating several static objects as being legs. This

behavior was anticipated to some extent, and as shown in chapter 5.4 the plugin is still

very usable for its intended purpose.

Tracking legs with the relatively low scan rate proved to be a major problem at any-

thing but very slow movement speeds. Best results were attained with a maximum

distance of 0.15 - 0.20 m along with a maximum certainty of 5-10. With this configura-

tion it was possible to keep track of legs moving well below the average human walk-

ing speed, with some problems in the case of one leg blocking another as shown in

video 3 on the CD

 Detection and tracking of people and moving objects Mi 35

 Mikkel Viager, January 2011

Even though tracking was only possible at low movement speed, the tests have shown

that the implemented theory does work in practice, indicating increased capability

with higher scan rates.

5.3.5 Noise Sources

Several noise sources have proven to have significant negative impact on the perfor-

mance in real-world operation, and are estimated to have influence on the following:

Black color The color black absorbs a lot of light instead of reflecting it. If

the returning laser reflection is too weak, it won’t be detected

by the laser scanner.

Reflectivity Shiny surfaces will reflect almost all light in a single direction,

resulting in no light being reflected back towards the laser

scanner, unless the angle of reflection is very small.

Sunlight Direct sunlight on surfaces in the environment or directly at

the laser scanner makes the laser light severely less distinctive

and harder to detect.

Pants Persons wearing non-tight pants will be detected as legs of

varying shapes. Many of these are however still recognized as

leg by the currently used algorithm.

Distance to sensor If a leg is close to the sensor it will include many points of de-

tection compared to a leg at a longer distance. This compli-

cates the approach used in the detection algorithm, which

evaluates the number of points defining a cluster.

Movement speed Moving objects can be a problem when merging consecutive

scans, and for slow scan rates the possibility of slight deforma-

tion of data should also be considered.

Overlapping legs One leg blocking the view of another makes such a hidden leg

both undetectable and untrackable for the duration of the

overlap.

Laser range When moving out of the maximum laser range, a tracked leg

will remain at the point of disappearance until its certainty

reaches zero.

36 Detection and tracking of people and moving objects
.

Mikkel Viager, January 2011

5.4 Application and usability

Even though pplfinder is designed to provide information on positions of human legs,

the option to use it as a framework for other detection algorithms makes it usable in

many other applications.

Using a laser scanner to detect and track humans successfully in a dynamic environ-

ment has high requirements to the performance of the laser scanner. With an invest-

ment in the right hardware, the plugin would achieve results of good use in robot con-

trol. Primarily in controlled environments such as industrial facilities, where the num-

ber of leg-shaped static objects can be considered and taken care of.

On the SMR-platform the usability of the plugin is limited by the scan rate and posi-

tion of the laser scanner. The low scan rate severely limits the ability to track legs, and

the initial position of the laser scanner makes it impossible to even detect legs (stan-

dard placement is approximately 5cm above the ground, resulting in data on shapes

from shoes instead of legs, and causing problems when feet are lifted from the ground

while walking). With a repositioned laser scanner the detection functionality becomes

useful, but any other control software using the laser scanner needs to be adapted to

this new hardware configuration. Even with only the functionality of detection (at

least until the laser scanner driver is fixed), the resulting data is still useable as guide

marks for other sensors and control processes. As an example, the efficiency of cam-

era based detection of humans would be greatly improved when provided with posi-

tions of what appears to be human legs to the laser scanner. Instead of searching the

entire field of vision, it would be possible to concentrate on the regions of interest

pointed out by the pplfinder plugin. Furthermore, a way of communicating the out-

come of the camera analysis back to pplfinder could also help reduce the number of

wrongful detection of static objects as human legs.

Primary use of the plugin in its current form and

with the available hardware will most likely be with

the other mobile robots used as research platforms

for Mobotware, of which two are shown in Figure

12. With higher scan rates and higher position of

the laser scanner, these robots will be able to bene-

fit from the plugin immediately.

Additional options for use with the largest robots

using Mobotware should also be considered. A ma-

jor research field is development of robust control

methods for mobile robots in agricultural use. These robots are autonomous tractors

equipped with a wide range of sensors and computers in order to achieve a high level

Figure 12: Two of the larger mobile robots

from the AUT department of DTU

 Detection and tracking of people and moving objects Mi 37

 Mikkel Viager, January 2011

of control robustness, making it reasonable to allow these giant machines to operate

without direct human influence. One way of achieving this is by merging data from

sensors of several types to get a better model of the environment. An obvious use for

the pplfinder plugin would be for navigating an orchard with lines of trees, where the

trunks of the trees would be detected as legs because of their shape. Positional data

on the trunks could be used to estimate where the two closest lines of trees are placed

relative to the tractor, and send out warnings if the tractor is not driving in the middle

of the two.

5.5 Proof of concept

In order to provide ideas for using pplfinder, as well as to show examples of implemen-

tation for use as reference in the future, two SMRCL-scripts has been created. A sim-

ple script using only positional data to find and move towards the closest visible leg,

and a more advanced approach of having the robot follow a specific leg.

These examples are meant to demonstrate the capabilities of pplpfinder as best poss-

ible with the limitations of using the SMR-platform for the tests.

5.5.1 Follow nearest

Inspired by a functionality of the Iromec robot mentioned in chapter 1, making the

robot follow the nearest leg available is a good way of demonstrating that the plugin

is working as intended.

A simple instruction to follow the nearest leg has limited practical use, due to the un-

certain identity of the leg being followed. But even with this limitation, a use for this

approach still exists. In an exercise of keeping attention, the Iromec robot makes use

of this simple rule to follow the person currently granted its attention (the closest

one). A child quickly understands the robots rules of behavior, and will usually try to

get the attention of the robot by stepping between it and the person being followed.

While the Iromec prototype has multiple sensors and specially designed control soft-

ware, allowing the ability to avoid obstacles while pursuing a person, it is possible to

replicate the basic idea with only one laser scanner and the pplfinder plugin.

Getting the X and Y coordinates of the closest leg is done with a single command, but

calculating the angle to turn in order to have the robot face the right direction has to

be done in the SMRCL-script. Initially a desired distance to the closes leg is chosen,

making the robot move towards it whenever the actual distance is greater than the

desired. Additionally it was seen through test results that continuous adjustments on

the direction of the robot was a great improvement compared to only doing direc-

tional adjustments when driving (using the SMRCL command “driveon”, and driving

only a fraction of the total distance before re-evaluating).

38 Detection and tracking of people and moving objects
.

Mikkel Viager, January 2011

Since this implementation uses only immediate positions of legs, the configuration

values for both maximum certainty and distance difference should be set relatively

low, as there is no need remember the identity of each leg. This change of values is

done directly in the SMRCL-script.

The performance of the final implementation is very decent, taking into account that

there is no attempt of obstacle avoidance. Within the range of human movement

speed allowing the robot to keep up, the task of following is successfully completed.

Further improvements could be made with a limitation in the detection angle, making

the robot less likely to suddenly turn towards passing humans or table legs to the

sides, when they are detected as being legs of closest distance. A demonstration is

shown in video 4 on the CD.

5.5.2 Follow best

Another option to solve the problem with passing humans has been tested. The idea

was that with a higher allowance in the value of maximum certainty, the leg being

followed would have a higher certainty value than a briefly passing one. With the only

change being to follow the best leg (of highest certainty) instead of the closest, results

was not very good. The robot would simply follow any stationary person within range

of the laser scanner, since moving is the main cause of failed detections and lowering

of certainty. Where the “follow closest” solution is usable, the “follow best” is not.

5.5.3 Follow VIP

As a combination of the advantages with each of the two previous examples, a solu-

tion to follow a specific person has been created. This could be a very useful ability in

many cases where a mobile robot has to navigate in an environment shared with hu-

mans.

An example of use could be in fields where rolling tables are used to carry objects,

such as hospitals and restaurants, requiring the full attention of an employee to navi-

gate the table. By making the table intelligent and able to follow a specific person, the

employee has both hands free for other purposes while transporting the table.

Another advantage could be the ability to navigate in an environment filled with hu-

mans, without getting in their way. While the fastest way for a robot to move from A

to B would be in a straight line, any humans in its way would have to move out of the

way. Whereas humans walking towards each other usually manage to avoid collision

almost by instinct, robots need many sensors to achieve the same ability of avoiding

collision with a human. Taking advantage of the human abilities, following a human

would require less important decision making from the robot and could maybe even

allow us to learn more about instinctive human navigation rules.

 Detection and tracking of people and moving objects Mi 39

 Mikkel Viager, January 2011

The developed script is designed to demonstrate the ability of using the tracking func-

tionality of pplfinder to follow a specific leg, while ignoring all other occurrences of

legs in the environment. This approach also deals with the problem of having static

objects detected as legs, since these will also be ignored while the robot is following

the VIP. When no VIP is chosen, the robot remains stationary and search for legs with-

in its “target zone”. To be chosen as the VIP, one has to stand in a 0.6m by 0.8m

square in front of the robot and achieve a certainty of the maximum value allowed.

When this happens, the robot changes state to “following” after informing its sur-

roundings by speaking the word “found”. Once the VIP has been chosen, the robot will

follow that person until he disappears (his certainty goes below 1). When this happens,

the robot pronounce the word “lost”, stops at its current position and goes back to

initial stage to search for a new VIP. Using the approach to stop when in doubt is a

good example of practical use because of its high safety, and is also a good way of

demonstrating the problem of having a slow scan rate.

With a maximum certainty of 20 and maximum merging distance of 0.16m, the SMR

should be able to keep up with human movement of approximately 1.5 km/h =

0.42m/s (a leg speed of 3.0 km/h = 0.83m/s) under ideal conditions. Results from tests

have however shown that the conditions are not always ideal, and that even slower

movement is required to gain a good reliability. Alternatively, using a laser scanner

with a faster scan rate would be another way to overcome this problem.

5.6 Further work

Even though the plugin is ready for use in its current state, it is also a possibility to

continue its development.

Utilizing the saved position history could increase reliability of the tracking capability,

by expanding the amount of information available for each leg to also include move-

ment direction and speed.

After this, the obvious step would be to experiment with combination of detected legs

to indicate which two legs are considered to be a pair from the same human. This

could prove useful to overcome the problem of having one of a person’s legs overlap-

ping the other.

Finally the plugin could be used as a framework for testing and using new laser based

detection algorithms, for use with any robot capable of running with Mobotware.

 Detection and tracking of people and moving objects Mi 41

 Mikkel Viager, January 2011

6. Conclusion
In expanding the tools available for use with the Mobotware framework, the option to

detect and track humans has been successfully added through completion of this

project. Providing information on positions of human legs in the immediate environ-

ment of mobile robots has been made possible by creation of a plugin utilizing data

from a single laser scanner. For use with laser scanners of high scan rates, the option

to track individual legs over several scans is also a viable information resource.

Through evaluation of the given limitations it became obvious that these would not

compromise the overall functionality of the solution to be developed. The use of a

laser scanner provides a wider area of detection than a camera, and implementation

of the solution as a plugin allows direct use in existing solutions as well as good porta-

bility alongside Mobotware.

The plugin was developed in C++ with a software structure allowing future mainten-

ance and further development. The algorithm finding clusters of leg-shaped points

from a laser scan is easily replaceable, providing the option to extract any other

shapes for use in applications other than detection of humans.

Detection of human legs has been proven to work reliably, through extensive testing

conducted in both simulated and real-world environments. With high scan rates it is

possible to compensate for occurrences of failed detections by comparing and match-

ing subsequent scan results, providing the basic level of noise tolerance required when

used in real applications.

Successful tracking of human legs requires a scan rate reflecting the movement speed

to be tracked. This has been made clear in an example using the tracking ability of the

plugin to follow a specific leg until lost, which proved to provide good results for visua-

lization of the problem. By using the saved history of each leg it would be possible to

further improve tracking capabilities, with prediction of movement calculated from a

history of previous positions to estimate speed and direction of each leg. To achieve

truly reliable tracking data for standard human walking speeds, it is necessary to use a

laser scanner with a scan rate of approximately 60ms per scan or less.

By using adjustable values in the process of matching legs from consecutive scans, the

plugin has been made configurable to match many different noise conditions and en-

vironments, which is an important factor in terms of adaptability.

Even without the increased reliability achieved with fusion of data from more than

one sensor type, a basic behavior similar to that of a professional mobile robot proto-

type has been achieved. Providing data on human positions for fusion with data from

other sensor types or as a tool in development of new control algorithms, significant

42 Detection and tracking of people and moving objects
.

Mikkel Viager, January 2011

advantages can be achieved with use of the developed plugin, in the increasing num-

ber of cases where mobile robots have to navigate and share an environment with

humans.

When reviewing the entire project in terms of results achieved, the final solution is

compared to the initial desired success levels presented in chapter 2.4. With a reliable

functionality to provide other plugins and even SMRCL-scripts with information on

human positions, the basic level of success is considered to have been achieved. In-

cluding the option to also track these people when moving, along with the several

simulated and real-world test-results and examples of use presented in this report,

increases the general usability of the product in many future applications. Even

though the ability to track humans moving at average walking speed could not be

proven to work with the laser scanner on the SMR, the theory behind it has been do-

cumented and is thereby estimated to work using laser scanners with higher scan

rates. With this detail in mind, the results achieved through completion of this project

are considered to nearly fulfill the requirements of the highest success level desired.

 Detection and tracking of people and moving objects

Appendix A

This appendix contains more details on the plug

ter 4. With focus on the use of C++ in the programming process, this documentation is

mainly targeting future programmers maintaining or further developing

A-1 Flow Diagram

Figure 13

Detection and tracking of people and moving objects

 Mikkel Viager, January 2011

This appendix contains more details on the plugin implementation explained in c

ter 4. With focus on the use of C++ in the programming process, this documentation is

mainly targeting future programmers maintaining or further developing

13: Overview of the flow of tasks in the plugin.

 Mi 43

January 2011

in implementation explained in chap-

ter 4. With focus on the use of C++ in the programming process, this documentation is

mainly targeting future programmers maintaining or further developing pplfinder.

44 Detection and tracking of people and moving objects
.

Mikkel Viager, January 2011

A-1.1 Sorting of raw data

The original implementation of the detection algorithm had all results saved to a file

for further analysis. Since opening and writing in files is much more time consuming

than internal information exchange in a program, it was chosen to do change this. For

future needs to debug the algorithm by also having the cluster data available in files, a

boolean variable “DEBUG” can be set to true.

Instead of modifying the algorithm to provide the results in world-coordinates, and

not relative to the laser scanner, the coordinate translation and transformation is car-

ried out in the main part of the plugin (ufuncpplfinder.cpp). When a point is given in

laser scanner coordinates to be at (�, �) and the origin and orientation of the robot is

known to be (��, ��, ��) with an offset of (∆�	
��, ∆�	
��) from the laser scanner to

robot origin, the same point can be expressed in world coordinates as:

����� = ������ −�����
����� ����� � �

� + ∆�	
��
� + ∆�	
��� +

�����

Which has been implemented in C++ code as the method robotToOdoCoo-

Transf(…).

The detection algorithm is kept in a seperate .cpp file (zimino_Pdetection.cpp), and it

is clearly marked which part has been added (also, the original code is commented in

Danish).

A-1.2 The “Leg” class

Taking advantage of option to create objects in C++, Leg-objects are used to keep

track of the gathered data. The new class is defined in the files Leg.cpp and Leg.h, and

has been build from scratch. As a Leg object is meant for storing information, it con-

tains several fields with accessors and mutators with only very basic calculation to be

done within the object itself. The basic field values are set already when the construc-

tor is called, and only some are editable afterwards.

Upon creation of a new object, the following information is provided and stored;

ID - An number unique to this leg (integer).

scanID - The ID of the laser scan in which this leg was first detected (long).

time - Timestamp for time of detection, in unix-time (double).

p - Positions of all scan points belonging to this leg (vector<UPosition>).

DEBUG - Boolean value allowing detailed console output if set to TRUE (boolean).

Instead of storing information of all the points defining a leg, the constructor calcu-

lates mean values for X and Y and stores these in fields, as well as in the position histo-

ry list. The position history is saved for each leg as a log of position and behavior. A

 Detection and tracking of people and moving objects Mi 45

 Mikkel Viager, January 2011

direct use of this information could be to always have an updated trajectory and speed

for each leg, in order to predict basic movement. Whereas this functionality haven´t

been implemented, it leaves the possibility to add additional functionality if desired.

A-1.3 Subsequent scan-data linking

For each scan with the laser, several legs from the previous scan are very likely to re-

main. This is due to a relatively high scan rate of 0.2 seconds or better, depending on

the laser scanner. Putting this theory to use, the plugin saves a vector of the legs de-

tected in the previous scan before a new scan is processed. All positions of new legs

are compared to positions of the previous ones in search for any matches.

A match is found when the distance between positions of a new leg to the position of

a previous leg is below a certain threshold. Should more than one leg qualify as a

match, the closest one is chosen. When a match is made, all data from the previous

leg is transferred to the new one, including the unique ID, and the certainty rating of

this leg is increased by 1 (if possible).

Upon completion of the matching process, all non-matched legs from the previous

scan get a reduction of -1 in their certainty value. Finally, any legs with positive cer-

tainty are accepted as being present in the current scan. This meaning that legs with

high certainty can “survive” for several scans without any leg being detected at that

position.

This approach uses the certainty value to allow errors in the readings to some extent.

Should the detection of a leg fail because of noise, the history of that leg should not

necessarily be deleted right away. Using a certainty rating as a wildcard it is possible

to re-match lost legs that have been undetectable for short amounts of time.

It is however important to calibrate the value of certainty_max (int), to match the la-

ser scanner in use. Having unreasonably large values of certainty might result in non-

existing legs remaining as ghost for much longer time than anticipated, and maybe

even get “picked-up” as other legs passing by at a later time.

Thus the certainty value should be set high enough to prevent loss of legs due to

noise, but not so high that other legs are able to get within range to be mistaken for

the lost one.

Adjustments can also be made with the variable max_dist (int), defining the threshold

for the matching distance between two legs.

A-1.4 Visualization of results

To have the results visualized on the display of the auclient, it is required to load au-

poly.so.0 in its configuration file.

46 Detection and tracking of people and moving objects
.

Mikkel Viager, January 2011

All of the leg-points are deleted and re-drawn width each run of pplfinder, and are

shown with numbers starting at zero and counting up in the scan direction. A single

point at the initial starting position of the robot has been added as a workaround for a

problem with placement of the text for the first point. The issue was investigated far

enough to conclude that the problem did not exist in pplfinder, and a workaround was

thus used.

Whereas an option to disable the visualized results is not implemented, this can easily

be done by making execution of a single line of code conditional

A-1.5 Interface and availability of information

Following is the ulmsserver-console reply received when executing the command

“pplfinder help” after successfully loading aupplfinder.so.0.

--- available pplfinder options ---
help This message
run Run pplfinder; analyze current laserscan, and update all
 variables and history.
 (Must be run every time you want to update. This is the
 command you want to \"push\").
nearest Return information for the nearest leg in XML-like format
 for SMRCL, with the variables;
 l0 = <ID> (the unique ID-number for this leg)
 l1 = <scanID> (the laser scan ID-number)
 l2 = <timestamp> (time since plugin load)
 l3 = <Xmean> (mean X value for points defining this leg)
 l4 = <Ymean> (mean Y value for points defining this leg)
 l5 = <certainty> (rises +1 every time the leg is re-discovered)
 (falls -1 every time the leg is not re-discovered)
 (when this reaches 0, the leg is deleted)
 l6 = <Certainty_max> (maximum value the certainty can reach)
legInfo=n Return information on the leg with ID = n (for SMRCL, the
 same format as for "nearest")
testLegInfo=n Write information on the leg with ID = n to the console
 for testing purposes.
see also: SCANGET and SCANSET

--- available variables ---
The command "var pplfinder" can be used to see help for the variables
You can get/set the variables with the command "var pplfinder.<variableName>"

--- plugin-to-plugin interface ---
Both callGlobal and callGlobalV responses are available with the commands;
"var call=pplfinder.legInfo(n)" (where n is the ID for the desired leg)
"var call=pplfinder.testLegInfo(n)" (where n is the ID for the desired leg)

 Detection and tracking of people and moving objects Mi 47

 Mikkel Viager, January 2011

Appendix B

Figure 14: Close-up on the alternative placement of the laser scanner.

 Detection and tracking of people and moving objects Mi 49

 Mikkel Viager, January 2011

Appendix C

Figure 15: Left room test images

Figure 16: Middle room test images

50 Detection and tracking of people and moving objects
.

Mikkel Viager, January 2011

Figure 17: Right room test images

 Detection and tracking of people and moving objects Mi 51

 Mikkel Viager, January 2011

References
[1] marti_giusti_ICRA10.pdf (available from the CD)

[2] Patrizia Marti, Assistant Professor, University of Siena (Information obtained attending the Play-

 ware conference of 9
th

 September 2010, Mariott Hotel, Copenhagen)

[3] (04/01-2011) http://timmy.elektro.dtu.dk/rse/wiki/index.php/AU_Robot_Servers#Servers

[4] Daniel Muhle-Zimino – “Software for long-term operational service robot”, Ørsted – DTU 2007.

[5] (17/01-2011) http://www.hokuyo-aut.jp/02sensor/07scanner/urg_04lx.html

[6] (05/01-2011) http://playerstage.sourceforge.net/

 Detection and tracking of people and moving objects Mi 53

 Mikkel Viager, January 2011

CD Contents
As the files provided here are configured to work with a specific folder structure. Sev-

eral path changes might need to be made before they can be run.

To do a completely new installation, get Mobotware from http://timmy.elektro.dtu.dk

and copy the entire folder “aupplfinder” from this CD for direct use. After “making”

the plugin, aupplfinder.so.0 is created and can be loaded in the ini file of the

ulmsserver.

Folders on the CD:

Live

Contains all files used for running the live tests on smr3

Mobotware

Contains the trunk version Mobotware, including the folder “aupplfinder” in which all

code files developed and used for this project can be found, including a make-file.

pdf

Contains the pdf version of this report, as well as the pdf mentioned in the references.

Simulator

Contains all files used for running the simulation tests (configured to run on smr3)

Videos

Contains videos demonstrating the functionalities of the plugin:

Video1 – Screen capture of simulation demonstration.

Video2 –Demonstration testing detection of pants shapes.

Video3 – Demonstration testing tracking at low movement speed.

Video4 – Demonstration of the SMRCL-script to follow the nearest leg.

 Detection and tracking of people and moving objects Mi 55

 Mikkel Viager, January 2011

Developed C++ code
As per request, the developed code is included here in addition to the digital copy on

the CD.

follow_nearest (SMRCL-code)

PI = 3.14159265
laser "push t=0.2 cmd='pplfinder run' n=10000"
laser "push t=0.2 cmd='pplfinder nearest' n=10000"
laser "var pplfinder.certaintyMAX=4"
laser "var pplfinder.maxDist=0.2"
log "$l0" "$l1" "$l2" "$l3" "$l4" "$l5" "$l6"
l1First = $l1

label "newUpdate"
l1Last = $l1
id = $l1
xw = $l3
yw = $l4
x = $l3-$odox
y = $l4-$odoy
dist = sqrt(abs(($l3-$odox))*abs(($l3-$odox))+abs(($l4-$odoy))*abs(($l4-$odoy)))

if($l5 < $l6 | (x == 0 & y == 0) | sqrt(x*x+y*y) > 1.5) "checkScanID"
angle = atan(y/x)

%negative x
if (x > 0) "skipNegX"

%4th quadrant
if (y > 0) "skip4th"
angle = PI + angle
label "skip4th"

%3rd quadrant
if (y < 0) "skip3rd"
angle = -PI + angle
label "skip3rd"

label "skipNegX"

stringcat "angle=" angle
stringcat "odoth=" $odoth

thdiff = angle - $odoth

thdiffdeg = thdiff*(180/PI)

stringcat "world coord: x=" xw "y=" yw
stringcat "robot coord: x=" x "y=" y "th=" angle
stringcat "th diff: thdiff=" thdiff
stringcat "th diff degrees: th=" thdiffdeg

if (abs(thdiffdeg) < 5 & sqrt(abs(($l3-$odox))*abs(($l3-$odox))+abs(($l4-$odoy))*abs(($l4-$odoy))) < 0.6)
"newUpdate"
turn thdiffdeg
drive @v0.5 :(sqrt(abs(($l3-$odox))*abs(($l3-$odox))+abs(($l4-$odoy))*abs(($l4-$odoy))) <
0.6)|($drivendist > (dist/2))
stop
resetmotors
label "skipstop"

goto "newUpdate"

label "checkScanID"
wait 0.19
if (l1Last != $l1) "newUpdate"
goto "checkScanID"

label "stop"
stop

56 Detection and tracking of people and moving objects
.

Mikkel Viager, January 2011

follow_VIP (SMRCL-code)

%---initialization---
PI = 3.14159265
laser "push t=0.2 cmd='pplfinder run' n=10000"

laser "var pplfinder.certaintyMAX=15"
laser "var pplfinder.maxDist=0.26"

log "$l0" "$l1" "$l2" "$l3" "$l4" "$l5" "$l6"

GOALDIST = 0.60

HALFWIDTH = 0.3
DETECTDIST = 1

label "lost"
stop
speak "lost"
wait 0.1
%---wait and search---
label "state0"
scanID = $l1
wait 0.1
laser "push cmd='pplfinder nearest' n=1"

%stringcat "prevLaser= " scanID
%stringcat "currLaser= " $l1
if(scanID == $l1) "state0" %is this a new laserscan?

if($l5 < $l6) "state0" %if not maximized certainty

xw = $l3
yw = $l4
stringcat " xw: " xw
stringcat " yw: " yw

anglew = atan(yw/xw)

if(xw >= 0) "skipNegXw0"

if(yw >=0) "skipNegYw0"15
anglew = -(PI/2) + anglew
label"skipNegYw0"

if(yw < 0) "skipPosYw0"
anglew = (PI/2) + anglew
label"skipPosYw0"

label "skipNegXw0"

thwdeg = anglew * (180/PI)

diffX = $odox * -1
diffY = $odoy * -1
diffth = $odoth * -1

trans diffX diffY diffth xw yw thwdeg

stringcat " xr0: " $res0
stringcat " yr0: " $res1

xr = $res0
yr = $res1

if(yr > HALFWIDTH | yr < HALFWIDTH*-1 | xr > DETECTDIST | xr < 0.40) "state0"

IDtoFollow = $l0
scanNo = 0

speak "found"
wait 0.1

%---follow leg until lost---

 Detection and tracking of people and moving objects Mi 57

 Mikkel Viager, January 2011

label "state1stop"
stop
%wait 2
%resetmotors
label "state1"
scanNo = $l1
wait 0.05
stringcat "push cmd='pplfinder legInfo=" IDtoFollow "' n=1"
laser "$string"

if ($l0 < 0) "lost" %leg lost, restart

if(scanNo == $l1) "state1" %is this a new laserscan?

xw = $l3
yw = $l4
stringcat " xw: " xw
stringcat " yw: " yw

anglew = atan(yw/xw)

if(xw >= 0) "skipNegXw"

if(yw >=0) "skipNegYw"
anglew = -(PI/2) + anglew
label"skipNegYw"

if(yw < 0) "skipPosYw"
anglew = (PI/2) + anglew
label"skipPosYw"

label "skipNegXw"

thwdeg = anglew * (180/PI)

diffX = $odox * -1
diffY = $odoy * -1
diffth = $odoth * -1

trans diffX diffY diffth xw yw thwdeg

stringcat " xr: " $res0
stringcat " yr: " $res1

xr1 = $res0
yr1 = $res1
thr1 = atan(yr1/xr1)*180/PI

stringcat "thr: " thr1
stringcat "thw: " thwdeg

dist = sqrt(xr1*xr1 + yr1*yr1)
stringcat "dist to target:" dist

if (abs(thr1) < 10 | dist > GOALDIST) "skipturn"
toturn = thr1
turn toturn @v0.2
stop
label "skipturn"

if(dist < GOALDIST | abs(thr1) < 1) "state1stop"
driveon xw yw thr1 @v0.25 :($drivendist > dist/5 | sqrt(abs(($l3-$odox))*abs(($l3-$odox))+abs(($l4-
$odoy))*abs(($l4-$odoy))) < GOALDIST)
%stop
goto "state1"

58 Detection and tracking of people and moving objects
.

Mikkel Viager, January 2011

ufuncpplfinder.h

/***
 * Copyright (C) 2011 by Mikkel Viager and DTU *
 * s072103@student.dtu.dk *
 * *
 * This program is free software; you can redistribute it and/or modify *
 * it under the terms of the GNU General Public License as published by *
 * the Free Software Foundation; either version 2 of the License, or *
 * (at your option) any later version. *
 * *
 * This program is distributed in the hope that it will be useful, *
 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
 * GNU General Public License for more details. *
 ***/
#ifndef UFUNC_NEARGET_H
#define UFUNC_NEARGET_H

#include <cstdlib>

#include <ulms4/ufunclaserbase.h>
#include <urob4/uresposehist.h>
#include "Leg.h"
#include "../ugen4/upolygon.h"

//

/**
 * Laserscanner function to demonstrate
 * simple laser scanner data handling and analysis
 * @author Christian Andersen
*/

class UFuncPpl : public UFuncLaserBase
{
public:
 /**
 Constructor */
 UFuncPpl()
 {
 //create option vars
 varCertaintyMax = addVar("certaintyMax", 5.0, "d", "maximum certainty status the legs can attain");
 varMaxDist = addVar("maxDist", 0.09, "d", "maximum distance difference on two scans allowed for leg
to be verified as \"same\"");

 //create vars
 varLegsInView = addVar("legsInView", 0.0, "d", "the number of legs currently in view");
 varPplInView = addVar("pplInView", 0.0, "d", "the number of people currently in view");
 varClosestLegDist = addVar("closestLegDist", 0.0, "d", "distance in meters to the closest leg");
 varClosestLegID = addVar("closestLegID", 0.0, "d", "the ID number of the closest leg");
 varBestLegID = addVar("bestLegID", 0.0, "d", "the ID number of the leg with best certainty");

 //create methods
 addMethod("legInfo", "d", "return array of info for given leg (ID). On the form [ID, timestamp,
Xmean, Ymean, Certainty, Certainty_max]");
 addMethod("testLegInfo", "d", "print array of info for given leg (ID). On the form [ID, timestamp,
Xmean, Ymean, Certainty, Certainty_max]");

 // set the command (or commands) handled by this plugin
 setCommand("pplfinder", "pplFinder", "Detects and provides info on people, based on laser scan
data");

 UDataDouble d;
 d.setVal(0);
 for (int i = 0; i != 6; i++)
 legInfo.push_back(d);

 }
 /**
 Handle incomming command
 (intended for command separation)
 Must return true if the function is handled -
 otherwise the client will get a failed - reply */

 Detection and tracking of people and moving objects Mi 59

 Mikkel Viager, January 2011

 virtual bool handleCommand(UServerInMsg * msg, void * extra);
 bool compareResultLegs(std::vector<Leg> * prev, std::vector<Leg> * curr);
 bool drawPolygons(int polygons, int option, std::vector<Leg> * legs);
 bool createPolygon(Leg * leg, UPolygon * poly);
 bool robotToOdoCooTransf(std::vector<std::vector<UPosition> > * points, UResPoseHist * odoPose, UPosi-
tion * offset);
 bool calculateVars();
 bool updateVars();
 bool methodCall(const char * name, const char * paramOrder,
 UVariable ** params,
 UDataBase ** returnStruct,
 int * returnStructCnt);
 bool methodCall(const char * name, const char * paramOrder,
 char ** strings, const double * doubles,
 double * value,
 UDataBase ** returnStruct,
 int * returnStructCnt);

private:
 std::vector<Leg> prevLegsInView;
 std::vector<Leg> currLegsInView;
 std::vector<UDataDouble> legInfo;

 UResPoseHist * odoPose;
 int ID; //next available ID

 // Parameters and parameter pointers (set in .ini file)

 UVariable * varCertaintyMax;
 int certainty_max; //max value of certaincy

 UVariable * varMaxDist;
 double max_dist;

 // vars and varPointers

 UVariable * varLegsInView;
 double legsInView;

 UVariable * varPplInView;
 double pplInView;

 UVariable * varClosestLegDist;
 double closestLegDist;

 UVariable * varClosestLegID;
 double closestLegID;

 UVariable * varClosestLegPos;
 double closestLegPos[2];

 UVariable * varBestLegID;
 double bestLegID;

};

#endif

60 Detection and tracking of people and moving objects
.

Mikkel Viager, January 2011

ufuncpplfinder.cpp

/***
 * Copyright (C) 2011 by Mikkel Viager and DTU *
 * s072103@student.dtu.dk *
 * *
 * This program is free software; you can redistribute it and/or modify *
 * it under the terms of the GNU General Public License as published by *
 * the Free Software Foundation; either version 2 of the License, or *
 * (at your option) any later version. *
 * *
 * This program is distributed in the hope that it will be useful, *
 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
 * GNU General Public License for more details. *
 ***/

#include "ufuncpplfinder.h"
#include "zimino_pDetection.h"
#include "urespplfinder.h"

#ifdef LIBRARY_OPEN_NEEDED

/**
 * This function is needed by the server to create a version of this plugin */
UFunctionBase * createFunc()
{ // create an object of this type
 /** replace 'UFuncNear' with your classname */
 return new UFuncPpl();
}
#endif

///

bool UFuncPpl::handleCommand(UServerInMsg * msg, void * extra)
{ // handle a plugin command
 const bool DEBUG = false;
 certainty_max = varCertaintyMax->getInt(0);
 max_dist = varMaxDist->getDouble(0); // max acceptable distance a leg can move bewteen to consecutive
scans

 const int MIN_LASER_HEIGHT = 0.10; // in meters
 const int MRL = 500;
 char reply[MRL];
 bool ask4help;
 const int MVL = 30;
 char value[MVL];
 double * pdvalue;
 double dvalue;
 pdvalue = &dvalue;
 ULaserData * data;
 //UResPoseHist * odoPose;
 UPoseTime pose;
 ULaserPool * lasPool;
 UPosition lasPlacementOffset;
 //
 //int i;
 //double r;
 //double minRange; // min range in meter
 //double minAngle = 0.0; // degrees
 double d1 = 0.25, d2, h;

 bool gotHeading = false;

 // vvvvvvvvvvvvvvvvvvvvvvvvvvvv
 std::vector<std::vector<UPosition> > * zLegsAsPoints = new std::vector<std::vector<UPosition> >;
//vectors containing vectors of Upositions
 std::vector<Leg> * pPrevLegsInView = &prevLegsInView;
 std::vector<Leg> * pCurrLegsInView = &currLegsInView;

 // ^^^^^^^^^^^^^^^^^^^^^^^^^^^^

 // check for parameters - one parameter is tested for - 'help'
 ask4help = msg->tag.getAttValue("help", value, MVL);

 Detection and tracking of people and moving objects Mi 61

 Mikkel Viager, January 2011

 gotHeading = msg->tag.getAttDouble("heading", &d2, 5.0);
 if (ask4help)
 { // create the reply in XML-like (html - like) format
 sendHelpStart(msg, "pplfinder");
 sendText(msg, "--- available pplfinder options ---\n");
 sendText(msg, "help This message\n");
 sendText(msg, "run Run pplfinder; analyze current laserscan, and update all\n");
 sendText(msg, " variables and history. \n");
 sendText(msg, " (Must be run every time you want to update. This is the \n");
 sendText(msg, " command you want to \"push\"). \n");
 sendText(msg, "nearest Return information for the nearest leg in XML-like format\n");
 sendText(msg, " for SMRCL, with the variables; \n");
 sendText(msg, " l0 = <ID> (the unique ID-number for this leg)\n");
 sendText(msg, " l1 = <scanID> (the laser scan ID-number)\n");
 sendText(msg, " l2 = <timestamp> (time since plugin load)\n");
 sendText(msg, " l3 = <Xmean> (mean X value for points defining this leg)\n");
 sendText(msg, " l4 = <Ymean> (mean Y value for points defining this leg)\n");
 sendText(msg, " l5 = <certainty> (rises +1 every time the leg is re-
discovered)\n");
 sendText(msg, " (falls -1 every time the leg is not re-
discovered)\n");
 sendText(msg, " (when this reaches 0, the leg is deleted)\n");
 sendText(msg, " l6 = <Certainty_max> (maximum value the certainty can reach)\n");
 sendText(msg, "legInfo=n Return information on the leg with ID = n (for SMRCL, the\n");
 sendText(msg, " same format as for \"nearest\") \n");
 sendText(msg, "testLegInfo=n Write information on the leg with ID = n to the console \n");
 sendText(msg, " for testing purposes. \n");
 sendText(msg, "see also: SCANGET and SCANSET\n");
 sendText(msg, "\n");
 sendText(msg, "--- available variables ---\n");
 sendText(msg, "The command \"var pplfinder\" can be used to see help for the variables\n");
 sendText(msg, "You can get/set the variables with the command \"var pplfinder.<variableName>\"\n");
 sendText(msg, "\n");
 sendText(msg, "--- plugin-to-plugin interface ---\n");
 sendText(msg, "Both callGlobal and callGlobalV responses are available with the commands;\n");
 sendText(msg, "\"var call=pplfinder.legInfo(n)\" (where n is the ID for the desired leg)\n");
 sendText(msg, "\"var call=pplfinder.testLegInfo(n)\" (where n is the ID for the desired leg)\n");
 sendText(msg, "\n");

 sendHelpDone(msg);
 }
 else
 { // do some action and send a reply

 //to get info on placement of laser-scanner
 lasPool = (ULaserPool *)getStaticResource("lasPool", false);
 if(lasPool != NULL)
 {
 lasPlacementOffset = lasPool->getDefDevice()->getDevicePos();
 if(lasPlacementOffset.z < MIN_LASER_HEIGHT)
 printf("WARNING: Your Laser scanner is placed at %fm height, which is too low!\n"
 "You should place the laser scanner at least %dcm above the ground!\n"
 ,lasPlacementOffset.z, MIN_LASER_HEIGHT);
 }

 data = getScan(msg, (ULaserData*)extra);

 odoPose = (UResPoseHist *) getStaticResource("odoPose", true);
 if (odoPose != NULL)
 {
 pose = odoPose->getNewest();
 h = odoPose->getHistHeading(d1, d2, &pose, NULL);
 //snprintf(reply, MRL, "<pplfinder histHeading=\"%g\"/>\n", h);
 //sendMsg(reply);
 }
 else
 sendWarning("no odometry pose history");
 //
 if (data->isValid())
 {
 // vvvvvvvvvvvvvvvvvvvvvvvvvvvv

 if (msg->tag.getAttValue("run", value, MVL))
 {

62 Detection and tracking of people and moving objects
.

Mikkel Viager, January 2011

 //Update prevLegsInView, and clear (make ready) currLegsInView;
 prevLegsInView = currLegsInView;
 currLegsInView.clear();

 //printf("RUNNING ZIMINO's PEOPLE_DETECTION\n");

 zLegsAsPoints->clear();
 handlePeopleDetection (data, zLegsAsPoints);
 //transfer from robot to odometry coordinates
 robotToOdoCooTransf(zLegsAsPoints, odoPose, &lasPlacementOffset);

 std::vector<std::vector<UPosition> >::size_type i;
 double time = (double) data->getScanTime().GetDecSec();
 long scanID = data->getSerial();

 for (i = 0; i != zLegsAsPoints->size(); i++)
 {
 Leg* tempLeg = new Leg(ID+i, scanID, time, (*zLegsAsPoints)[i], DEBUG);
 //Create a new leg with the given ID, time, data and decide if we want debug output
 pCurrLegsInView->push_back((*tempLeg));
 }

 if(ID < 2147483000) //take care of overflow (very unlikely)
 ID += i;
 else
 ID = 0;

 //compare previous and current legs viewed, and store result in currLegsInView
 compareResultLegs(pPrevLegsInView, pCurrLegsInView);

 if(drawPolygons(pCurrLegsInView->size(), 1, pCurrLegsInView)&& DEBUG)
 printf("createPolygons have been successfully run for %d Leg(s)...!\n",pCurrLegsInView-
>size());

 }
 else if(msg->tag.getAttDouble("legInfo", pdvalue, 1.0))
 {
 UDataBase *pd[6] = {NULL, NULL, NULL, NULL, NULL, NULL};
 UVariable *par;

 UVariable uvar;
 uvar.setValued(*pdvalue); // pass on the variable
 par = &uvar;

 int n = 6;

 bool isOK = callGlobalV("pplfinder.legInfo", "d", &par, pd, &n);

 if(n > 5 && isOK)
 {
 snprintf(reply, MRL, "<laser l0=\"%g\" l1=\"%g\" l2=\"%g\" l3=\"%g\" l4=\"%g\" l5=\"%g\"
l6 =\"%g\" />\n",
 ((UDataDouble*) pd[0])->getVal(), // Leg ID
 ((UDataDouble*) pd[1])->getVal(), // Scan ID
 ((UDataDouble*) pd[2])->getVal(), // Timestamp
 ((UDataDouble*) pd[3])->getVal(), // Xmean
 ((UDataDouble*) pd[4])->getVal(), // Ymean
 ((UDataDouble*) pd[5])->getVal(), // Certainty
 (double) certainty_max); // Certainty_max

 }
 else
 {
 snprintf(reply, MRL, "<laser l0=\"%g\" l1=\"%g\" l2=\"%g\" l3=\"%g\" l4=\"%g\" l5=\"%g\" l6
=\"%g\" />\n",
 -1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0);
 }
 // send this string as the reply to the client
 sendMsg(reply);

 }else if(msg->tag.getAttDouble("nearest", pdvalue, 1.0))
 {
 UDataBase *pd[6] = {NULL, NULL, NULL, NULL, NULL, NULL};
 UVariable *par;

 Detection and tracking of people and moving objects Mi 63

 Mikkel Viager, January 2011

 UVariable uvar;
 uvar.setValued(closestLegID); // pass on the variable
 par = &uvar;

 int n = 6;

 bool isOK = callGlobalV("pplfinder.legInfo", "d", &par, pd, &n);

 if(n > 5 && isOK)
 {
 snprintf(reply, MRL, "<laser l0=\"%g\" l1=\"%g\" l2=\"%g\" l3=\"%g\" l4=\"%g\" l5=\"%g\"
l6 =\"%g\" />\n",
 ((UDataDouble*) pd[0])->getVal(), // Leg ID
 ((UDataDouble*) pd[1])->getVal(), // Scan ID
 ((UDataDouble*) pd[2])->getVal(), // Timestamp
 ((UDataDouble*) pd[3])->getVal(), // Xmean
 ((UDataDouble*) pd[4])->getVal(), // Ymean
 ((UDataDouble*) pd[5])->getVal(), // Certainty
 (double) certainty_max); // Certainty_max

 }
 else
 {
 snprintf(reply, MRL, "<laser l0=\"%g\" l1=\"%g\" l2=\"%g\" l3=\"%g\" l4=\"%g\" l5=\"%g\" l6
=\"%g\" />\n",
 -1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0);
 }
 // send this string as the reply to the client
 sendMsg(reply);
 }else if(msg->tag.getAttDouble("best", pdvalue, 1.0))
 {
 UDataBase *pd[6] = {NULL, NULL, NULL, NULL, NULL, NULL};
 UVariable *par;

 UVariable uvar;
 uvar.setValued(bestLegID); // pass on the variable
 par = &uvar;

 int n = 6;

 bool isOK = callGlobalV("pplfinder.legInfo", "d", &par, pd, &n);

 if(n > 5 && isOK)
 {
 snprintf(reply, MRL, "<laser l0=\"%g\" l1=\"%g\" l2=\"%g\" l3=\"%g\" l4=\"%g\" l5=\"%g\"
l6 =\"%g\" />\n",
 ((UDataDouble*) pd[0])->getVal(), // Leg ID
 ((UDataDouble*) pd[1])->getVal(), // Scan ID
 ((UDataDouble*) pd[2])->getVal(), // Timestamp
 ((UDataDouble*) pd[3])->getVal(), // Xmean
 ((UDataDouble*) pd[4])->getVal(), // Ymean
 ((UDataDouble*) pd[5])->getVal(), // Certainty
 (double) certainty_max); // Certainty_max

 }
 else
 {
 snprintf(reply, MRL, "<laser l0=\"%g\" l1=\"%g\" l2=\"%g\" l3=\"%g\" l4=\"%g\" l5=\"%g\" l6
=\"%g\" />\n",
 -1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0);
 }
 // send this string as the reply to the client
 sendMsg(reply);
 }else if(msg->tag.getAttDouble("testLegInfo", pdvalue, 1.0))
 {
 UDataBase *pd[6] = {NULL, NULL, NULL, NULL, NULL, NULL};
 UVariable *par;

 UVariable uvar;
 uvar.setValued(*pdvalue); // pass on the variable
 par = &uvar;

 int n = 6;

 bool isOK = callGlobalV("pplfinder.legInfo", "d", &par, pd, &n);

64 Detection and tracking of people and moving objects
.

Mikkel Viager, January 2011

 if(n > 5 && isOK)
 {
 snprintf(reply, MRL, "<laser l0=\"%g\" l1=\"%g\" l2=\"%g\" l3=\"%g\" l4=\"%g\" l5=\"%g\"
l6 =\"%g\" />\n",
 ((UDataDouble*) pd[0])->getVal(), // Leg ID
 ((UDataDouble*) pd[1])->getVal(), // Scan ID
 ((UDataDouble*) pd[2])->getVal(), // Timestamp
 ((UDataDouble*) pd[3])->getVal(), // Xmean
 ((UDataDouble*) pd[4])->getVal(), // Ymean
 ((UDataDouble*) pd[5])->getVal(), // Certainty
 (double) certainty_max); // Certainty_max
 callGlobalV("pplfinder.testLegInfo", "d", &par, pd, &n);
 }
 else
 {
 snprintf(reply, MRL, "<laser l0=\"%g\" l1=\"%g\" l2=\"%g\" l3=\"%g\" l4=\"%g\" l5=\"%g\" l6
=\"%g\" />\n",
 -1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0);
 }
 // send this string as the reply to the client
 sendMsg(reply);

 }

 else
 sendDebug ("Command not handled (by me)");
 //return result;
 // ^^^^^^^^^^^^^^^^^^^^^^^^^^^^

 }
 else
 sendWarning(msg, "No scandata available");
 }

 // return true if the function is handled with a positive result
 return true;
}

//compare previous and current legs viewed, and store result in currLegsInView
bool UFuncPpl::compareResultLegs(std::vector<Leg> * prev, std::vector<Leg> * curr)
{
 //printf("running compare %d times with %d prev. legs\n", curr->size(), prev->size());
 std::vector<Leg>::size_type i,j;
 for (i = 0 ; i!=curr->size(); i++)
 {
 //printf("\nTest on current leg no. %d\n",i);
 int bestMatchAt = -1; //invalid vector position

 double bestMatchDist = 100.0; //initial not acceptable distance
 std::vector<Leg>::iterator iter = prev->begin();
 std::vector<Leg>::iterator iterBestMatchAt;

 //go through all legs in
 for (j = 0 ; j != prev->size(); j++)
 {
 //find distance between this and leg no. i
 double distDiff;

 anyCooPhytagoras((*prev)[j].getXmean(), (*curr)[i].getXmean(),
 (*prev)[j].getYmean(), (*curr)[i].getYmean(), &distDiff);
 //see if this has a closer distance
 //printf("distdiff = %f\n",distDiff);

 if(distDiff < bestMatchDist)
 {
 bestMatchAt = j;
 iterBestMatchAt = iter;
 bestMatchDist = distDiff;

 iter++;
 }

 }

 Detection and tracking of people and moving objects Mi 65

 Mikkel Viager, January 2011

 //printf("best match diff: %f\n", bestMatchDist);
 if(bestMatchDist < max_dist && bestMatchAt != -1)
 {
 //printf("found an acceptable match for leg no. %d \n",i);

 //do something with trajectory?
 (*curr)[i].setID((*prev)[bestMatchAt].getID());
 (*curr)[i].setPosHist((*prev)[bestMatchAt].getPosHist()); //save history
 (*curr)[i].addCertainty((*prev)[bestMatchAt].getCertainty(), certainty_max); //add saved cer-
tainty
 (*curr)[i].setColor((*prev)[bestMatchAt].getColor()); //save color
 if((*curr)[i].getCertainty() == certainty_max)
 (*curr)[i].setColorChar('k');
 else
 (*curr)[i].setColorChar('b');
 //printf("Detected leg now has certainty %d\n",(*curr)[i].getCertainty());

 //remove to indicate that this has been used already
 prev->erase(iterBestMatchAt);
 }else
 {
 //new leg found
 }

 }

 //go through all legs from previously, that was not matched
 for (i = 0 ; i!=prev->size(); i++)
 {
 //printf("Size of prev: %d\n", prev->size());
 (*prev)[i].addCertainty(-1, certainty_max); //subtract one from certainty

 if((*prev)[i].getCertainty() > 0) //if leg has a build-up certaincy
 {
 //This leg has been successfully matched before
 //the inability to detect the leg must have been an error.
 //include in current legs, as if this was detected
 curr->push_back((*prev)[i]);
 //printf("Saved undetected Leg (ID %d)! certainty now at %d\n",
(*prev)[i].getID(),(*prev)[i].getCertainty());
 //printf("Position was: Xmean = %f, Ymean = %f\n",(*prev)[i].getXmean(),
(*prev)[i].getYmean());
 }
 }

 calculateVars();
 updateVars();
 return true;
}

//adapted from copyCellPolys in uresavoid.cpp
bool UFuncPpl::drawPolygons(int polygons, int option, std::vector<Leg> * legs)
{
UResBase * pres;
 int i, n;
 const int MSL = 30;
 char s[MSL];
 UVariable * par[3];
 UVariable vs;
 UVariable vr;
 UVariable vCoo;
 UDataBase * db, *dbr;
 bool isOK;
 UPolygon40 poly;
 //
 pres = getStaticResource("poly", false, false);
 if (pres != NULL && polygons > 0)
 { // delete old footprint polygons in polygon resource
 snprintf(s, MSL, "legPoly.*");
 vs.setValues(s, 0, true);
 par[0] = &vs;
 dbr = &vr;
 isOK = callGlobalV("poly.del", "s", par, &dbr, &n);

66 Detection and tracking of people and moving objects
.

Mikkel Viager, January 2011

 //
 // set polygon coordinate system to odometry (0=odo, 1=map, 3=utm)
 vCoo.setDouble(0.0);
 par[2] = &vCoo;
 if (option == 1)
 { // all cells

 for (i = -1; i < polygons; i++)
 {
 if(i == -1){
 //create starting point polygon
 //workaround for first polygon offset. Makes count start at 1
 poly.clear();
 poly.add(0, 0, 0.0);
 poly.color[0] = 'w';
 }else
 isOK = createPolygon(&(*legs)[i] ,&poly); //avcg->getCellPoly(i, &poly);
 if (isOK)
 {
 snprintf(s, MSL, "legPoly.%03d", i);
 vs.setValues(s, 0, true);
 db = &poly;
 par[1] = (UVariable *) db;
 isOK = callGlobalV("poly.setPolygon", "scd", par, &dbr, &n);
 if ((not isOK and i == 0) or not vr.getBool())
 printf("UResAvoid::copyCellPolys: failed to 'poly.setPoly(%s, %d)'\n", s, i);
 } else
 printf("createPolygon failed for polygon no. %d!\n",i);
 }
 }

 } else
 printf("failed on getStaticResource, or polygon number invalid!\n");

 return true;
}

//take info in Leg object, and set options in given poly
bool UFuncPpl::createPolygon(Leg * leg, UPolygon * poly)
{
 poly->clear();
 poly->add(leg->getXmean(), leg->getYmean(), 0.0);
 poly->color[0] = (*leg->getColorChar(0));
 poly->color[1] = (*leg->getColorChar(1));
 poly->color[2] = (*leg->getColorChar(2));
 poly->color[3] = (*leg->getColorChar(3));

 return true;

}

//correct given points in robot coordinates to odometry coordinates
bool UFuncPpl::robotToOdoCooTransf(std::vector<std::vector<UPosition> > * points, UResPoseHist * odo-
Pose, UPosition * offset)
{

 UPose p = odoPose->getNewest();
 double totX,totY;
 double theta = p.h;
 double odoX = p.x;
 double odoY = p.y;
 double offX = offset->x;
 double offY = offset->y;

 std::vector<std::vector<UPosition> >::iterator iter1= points->begin();
 std::vector<UPosition>::iterator iter2;

 for(iter1 = points->begin(); iter1 != points->end(); iter1++)
 {
 for(iter2 = iter1->begin(); iter2 != iter1->end(); iter2++)
 {
 totX = iter2->x + offX;
 totY = iter2->y + offY;
 //translation and rotation

 Detection and tracking of people and moving objects Mi 67

 Mikkel Viager, January 2011

 iter2->x = (totX*cos(theta) - totY*sin(theta))+odoX;
 iter2->y = (totX*sin(theta) + totY*cos(theta))+odoY;
 }
 }
 //printf("successfuly translated and rotated\n");
 return true;
}

bool UFuncPpl::calculateVars()
{
 // legsInView
 legsInView = currLegsInView.size();

 // pplInView

 // closestLegDist closestLegID bestLegID
 double closest_dist = 4.0;
 int closest_ID = -1;
 int best_certainty = 0;
 int best_ID = -1;

 UPose p = odoPose->getNewest();
 double odoX = p.x;
 double odoY = p.y;

 std::vector<Leg>::iterator iter;

 for (iter = currLegsInView.begin(); iter!=currLegsInView.end(); iter++)
 {
 double legX = iter->getXmean();
 double legY = iter->getYmean();
 double distDiff;

 anyCooPhytagoras(odoX, legX, odoY, legY, &distDiff);

 if(distDiff < closest_dist)
 {
 closest_dist = distDiff;
 closest_ID = iter->getID();
 }

 if(iter->getCertainty() > best_certainty)
 {
 best_certainty = iter->getCertainty();
 best_ID = iter->getID();
 }

 }

 if(closest_ID != -1)
 {
 closestLegDist = closest_dist;
 closestLegID = closest_ID;
 }else
 printf("Error finding closest leg. Data not updated");

 if(best_ID != -1)
 {
 bestLegID = best_ID;
 }else
 printf("Error finding best leg. Data not updated");

 return true;
}

bool UFuncPpl::updateVars()
{
 varLegsInView->setValued(legsInView);
 varPplInView->setValued(pplInView);
 varClosestLegDist->setValued(closestLegDist);
 varClosestLegID->setValued(closestLegID);
 varBestLegID->setValued(bestLegID);
 return true;

68 Detection and tracking of people and moving objects
.

Mikkel Viager, January 2011

}

//For use with callGlobalV
bool UFuncPpl::methodCall(const char * name, const char * paramOrder,
 UVariable ** params,
 UDataBase ** returnStruct,
 int * returnStructCnt)
{
 bool result = true;

 // evaluate standard functions
 if ((strcasecmp(name, "legInfo") == 0) and (strcmp(paramOrder, "d") == 0))
 {

 legInfo[0].setVal(0);
 legInfo[1].setVal(0);
 legInfo[2].setVal(0);
 legInfo[3].setVal(0);
 legInfo[4].setVal(0);
 legInfo[5].setVal(0);

 std::vector<Leg>::iterator iter;

 for(iter = currLegsInView.begin(); iter != currLegsInView.end(); iter++)
 {
 if (iter->getID() == (int) (*params)->getValued())
 {
 legInfo[0].setVal(iter->getID()); //ID
 legInfo[1].setVal((double) iter->getScanID()); //scanID
 legInfo[2].setVal(iter->getTimeStamp()); //Timestamp
 legInfo[3].setVal(iter->getXmean()); //Xmean
 legInfo[4].setVal(iter->getYmean()); //Ymean
 legInfo[5].setVal(iter->getCertainty()); //Certainty
 }
 }

 if((int) legInfo[2].getVal() == 0)
 {
 printf("ERROR: a leg with the given ID is not available.\n");
 legInfo[0].setVal(-1);
 legInfo[1].setVal(-1);
 legInfo[2].setVal(-1);
 legInfo[3].setVal(-1);
 legInfo[4].setVal(-1);
 legInfo[5].setVal(-1);
 }

 if(*returnStructCnt > 5)
 {
 returnStruct[0] = &legInfo[0];
 returnStruct[1] = &legInfo[1];
 returnStruct[2] = &legInfo[2];
 returnStruct[3] = &legInfo[3];
 returnStruct[4] = &legInfo[4];
 returnStruct[5] = &legInfo[5];
 }

 //*returnStructCnt = legInfo.size();
 }
 else if((strcasecmp(name, "testLegInfo") == 0) and (strcmp(paramOrder, "d") == 0))
 {
 UDataBase *pd[6] = {NULL, NULL, NULL, NULL, NULL, NULL};
 UVariable *par;

 UVariable uvar;
 uvar.setValued((*params)->getValued()); // pass on the variable(s)
 par = &uvar;

 int n = 6;

 bool isOK = callGlobalV("pplfinder.legInfo", "d", &par, pd, &n);

 if(n > 5 && isOK)
 {
 printf("reply[0] ID = %f\n",((UDataDouble*) pd[0])->getVal());

 Detection and tracking of people and moving objects Mi 69

 Mikkel Viager, January 2011

 printf("reply[1] scanID = %f\n",((UDataDouble*) pd[1])->getVal());
 printf("reply[2] Timestamp = %f\n",((UDataDouble*) pd[2])->getVal());
 printf("reply[3] Xmean = %f\n",((UDataDouble*) pd[3])->getVal());
 printf("reply[4] Ymean = %f\n",((UDataDouble*) pd[4])->getVal());
 printf("reply[5] Certainty = %f\n",((UDataDouble*) pd[5])->getVal());
 }

 *returnStructCnt = 6;
 }
 else
 result = false;
 return result;
}

//For use with callGlobal
bool UFuncPpl::methodCall(const char * name, const char * paramOrder,
 char ** strings, const double * doubles,
 double * value,
 UDataBase ** returnStruct,
 int * returnStructCnt)
{
 bool result = true;

 // evaluate standard functions
 if ((strcasecmp(name, "legInfo") == 0) and (strcmp(paramOrder, "d") == 0))
 {

 legInfo[0].setVal(0);
 legInfo[1].setVal(0);
 legInfo[2].setVal(0);
 legInfo[3].setVal(0);
 legInfo[4].setVal(0);
 legInfo[5].setVal(0);

 std::vector<Leg>::iterator iter;

 for(iter = currLegsInView.begin(); iter != currLegsInView.end(); iter++)
 {
 if (iter->getID() == *doubles)
 {
 legInfo[0].setVal(iter->getID()); //ID
 legInfo[1].setVal((double) iter->getScanID()); //scanID
 legInfo[2].setVal(iter->getTimeStamp()); //Timestamp
 legInfo[3].setVal(iter->getXmean()); //Xmean
 legInfo[4].setVal(iter->getYmean()); //Ymean
 legInfo[5].setVal(iter->getCertainty()); //Certainty
 }
 }

 if((int) legInfo[2].getVal() == 0)
 {
 printf("ERROR: a leg with the given ID is not available. Returning [-1,-1,-1,-1,-1]\n");
 legInfo[0].setVal(-1);
 legInfo[1].setVal(-1);
 legInfo[2].setVal(-1);
 legInfo[3].setVal(-1);
 legInfo[4].setVal(-1);
 legInfo[5].setVal(-1);
 }

 if(*returnStructCnt > 5)
 {
 returnStruct[0] = &legInfo[0];
 returnStruct[1] = &legInfo[1];
 returnStruct[2] = &legInfo[2];
 returnStruct[3] = &legInfo[3];
 returnStruct[4] = &legInfo[4];
 returnStruct[5] = &legInfo[5];
 }
 *value = 1;
 *returnStructCnt = legInfo.size();
 }
 else if((strcasecmp(name, "testLegInfo") == 0) and (strcmp(paramOrder, "d") == 0))
 {
 UDataBase *pd[6] = {NULL, NULL, NULL, NULL, NULL, NULL};

70 Detection and tracking of people and moving objects
.

Mikkel Viager, January 2011

 UVariable *params;

 UVariable uvar;
 uvar.setValued(*doubles); // pass on the variable(s)
 params = &uvar;

 int n = 6;

 bool isOK = callGlobalV("pplfinder.legInfo", "d", ¶ms, pd, &n);

 if(n > 5 && isOK)
 {
 printf("reply[0] ID = %f\n",((UDataDouble*) pd[0])->getVal());
 printf("reply[1] scanID = %f\n",((UDataDouble*) pd[1])->getVal());
 printf("reply[2] Timestamp = %f\n",((UDataDouble*) pd[2])->getVal());
 printf("reply[3] Xmean = %f\n",((UDataDouble*) pd[3])->getVal());
 printf("reply[4] Ymean = %f\n",((UDataDouble*) pd[4])->getVal());
 printf("reply[5] Certainty = %f\n",((UDataDouble*) pd[5])->getVal());
 }

 *returnStructCnt = 6;
 *value = 2;
 }
 else
 result = false;
 return result;
}

urespplfinder.h

/***
 * Copyright (C) 2011 by Mikkel Viager and DTU *
 * s072103@student.dtu.dk *
 * *
 * This program is free software; you can redistribute it and/or modify *
 * it under the terms of the GNU General Public License as published by *
 * the Free Software Foundation; either version 2 of the License, or *
 * (at your option) any later version. *
 * *
 * This program is distributed in the hope that it will be useful, *
 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
 * GNU General Public License for more details. *
 ***/

#ifndef URESPPLFINDER_H
#define URESPPLFINDER_H

void anyCooPhytagoras(double x1, double x2, double y1, double y2, double * c);
void copyChar(char FromCh, char ToCh, int number);

#endif /* URESPPLFINDER_H */

 Detection and tracking of people and moving objects Mi 71

 Mikkel Viager, January 2011

urespplfinder.cpp

/***
 * Copyright (C) 2011 by Mikkel Viager and DTU *
 * s072103@student.dtu.dk *
 * *
 * This program is free software; you can redistribute it and/or modify *
 * it under the terms of the GNU General Public License as published by *
 * the Free Software Foundation; either version 2 of the License, or *
 * (at your option) any later version. *
 * *
 * This program is distributed in the hope that it will be useful, *
 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
 * GNU General Public License for more details. *
 ***/

#include <math.h>

void anyCooPhytagoras(double x1, double x2, double y1, double y2, double * c){

 double a, b;

 //find a
 if (x1 < 0)
 {
 if(x2 < 0)
 {
 a = fabs(fabs(x1)-fabs(x2));
 }else
 {
 a = fabs(x1-x2);
 }
 }else
 a = fabs(x2-x1);

 //find b
 if (y1 < 0)
 {
 if(y2 < 0)
 {
 b = fabs(fabs(y1)-fabs(y2));
 }else
 {
 b = fabs(y1-y2);
 }
 }else
 b = fabs(y2-y1);

 (*c) = sqrt(a*a + b*b);
}

72 Detection and tracking of people and moving objects
.

Mikkel Viager, January 2011

Leg.h

/***
 * Copyright (C) 2011 by Mikkel Viager and DTU *
 * s072103@student.dtu.dk *
 * *
 * This program is free software; you can redistribute it and/or modify *
 * it under the terms of the GNU General Public License as published by *
 * the Free Software Foundation; either version 2 of the License, or *
 * (at your option) any later version. *
 * *
 * This program is distributed in the hope that it will be useful, *
 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
 * GNU General Public License for more details. *
 ***/

//Header file for Leg.cpp
//Defines the Leg-object

#ifndef PPL_LEG_H
#define PPL_LEG_H

#include <vector>
#include <list>
#include "../ugen4/u3d.h"

class Leg {

 public:
 Leg();
 Leg(int ID, long scanID, double time, std::vector<UPosition> p, bool DEBUG);
 void setColor();
 void setColor(char * color);
 void setColorChar(char c);
 char * getColor();
 char * getColorChar(int i);
 void setTimeStamp(double time);
 double getTimeStamp();
 double getXmean();
 double getYmean();
 int getCertainty();
 void addCertainty(int x, int max);
 void setPosHist(std::list<UPosition> * l);
 std::list<UPosition> * getPosHist();
 int getID();
 void setID(int ID);
 long getScanID();

 char color[8];

 private:
 int ID;
 long scanID;
 double timestamp;
 double Xmean;
 double Ymean;
 std::list<UPosition> posHist;

 int points;
 int certainty;

};

#endif

 Detection and tracking of people and moving objects Mi 73

 Mikkel Viager, January 2011

Leg.cpp

/***
 * Copyright (C) 2011 by Mikkel Viager and DTU *
 * s072103@student.dtu.dk *
 * *
 * This program is free software; you can redistribute it and/or modify *
 * it under the terms of the GNU General Public License as published by *
 * the Free Software Foundation; either version 2 of the License, or *
 * (at your option) any later version. *
 * *
 * This program is distributed in the hope that it will be useful, *
 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
 * GNU General Public License for more details. *
 ***/

// Defines the Leg-Object

#include <list>

#include "Leg.h"
#include "string.h"

Leg::Leg(){}

//Given a vector of Upositions with points defining this leg, create with the
// given values.
Leg::Leg(int ID, long scanID, double time, std::vector<UPosition> p, bool DEBUG)
{
 double tempX = 0.0;
 double tempY = 0.0;
 double count = 0.0;

 //take mean of x and y values
 for (std::vector<UPosition>::size_type i = 0; i !=p.size(); i++)
 {
 tempX += p[i].x;
 tempY += p[i].y;
 count++;
 }

 Xmean = tempX/count;
 Ymean = tempY/count;
 UPosition pos(Xmean, Ymean, 0);
 posHist.push_back(pos);
 timestamp = time;
 points = (int) count;
 setColor();
 certainty = 1;
 this->ID = ID;
 this->scanID = scanID;

 //DEBUG - Print points and mean values to console
 if(DEBUG)
 {
 printf("\nP Leg no. %d\n",ID);
 for (std::vector<UPosition>::size_type j = 0; j != p.size(); j++){
 p[j].print("Point:");
 }
 printf("Mean x: %f y: %f\n", Xmean, Ymean);
 printf("Points in leg: %d\n", (int) count);
 printf("Color of leg: %s\n",color);
 }
 //END DEBUG

}
void Leg::setColor()
{
 color[0] = 'r';
 color[1] = '9';
 color[2] = 'o';

74 Detection and tracking of people and moving objects
.

Mikkel Viager, January 2011

 color[3] = 'd';
 color[4] = '"';
 color[5] = '"';
 color[6] = '"';
 color[7] = '\0';
}

void Leg::setColor(char * color)
{
 if(strlen(color) >= 4)
 {
 this->color[0] = color[0];
 this->color[1] = color[1];
 this->color[2] = color[2];
 this->color[3] = color[3];
 }
 else
 printf("ERROR: setColor in Leg had less than 4 characters\n");
}

void Leg::setColorChar(char c)
{
 color[0] = c;
}

char * Leg::getColor()
{

 return this->color;
}

char * Leg::getColorChar(int i)
{
 if (i >= 0 && i < 8)
 return &color[i];
 else
 return 0;
}

double Leg::getTimeStamp()
{
 return timestamp;
}

void Leg::setTimeStamp(double time)
{
 timestamp = time;
}

double Leg::getXmean()
{
 return Xmean;
}
double Leg::getYmean()
{
 return Ymean;
}

int Leg::getCertainty()
{
 return certainty;
}

void Leg::addCertainty(int x, int max)
{
 if(certainty + x <= max)
 {
 certainty += x;
 }else
 certainty = max;

}

//update current position, and store previous in history vector
void Leg::setPosHist(std::list<UPosition> * l)

 Detection and tracking of people and moving objects Mi 75

 Mikkel Viager, January 2011

{
 std::list<UPosition>::iterator iter = l->begin();
 while(iter != l->end())
 {
 UPosition pos = *iter;
 posHist.push_back(pos);
 iter++;
 }
}

std::list<UPosition> * Leg::getPosHist()
{
 return &posHist;
}

int Leg::getID()
{
 return ID;
}

void Leg::setID(int ID)
{
 this->ID = ID;
}

long Leg::getScanID()
{
 return scanID;
}

zimino_PDetection.h

/***
 * DMZ - Headerfile til plugin til menneske-genkendelse *
 * s011359@student.dtu.dk *
 * *
 ***/

#ifndef UFUNC_COG_H
#define UFUNC_COG_H

#include <cstdlib>
#include <urob4/ufunctionbase.h>
#include "../ulmsserver/ulaserpool.h"
#include <vector>
#include "Leg.h"

 /**
 Function to get closest distance */
 bool handlePeopleDetection(ULaserData * pushData, std::vector<std::vector<UPosition> > * zLegsAs-
Points);

#endif

76 Detection and tracking of people and moving objects
.

Mikkel Viager, January 2011

zimino_PDetection.cpp

/**
 * This file originates from the pDetection ulmsserver-plugin *
 * by DMZ - Daniel Muhle-Zimino,s011359@student.dtu.dk *
 * The below is part of the original plugin, modified to create c++ *
 * objects, instead of writing data to files as it did originally. *
 * Modifications by: MV - Mikkel Viager, s072103@student.dtu.dk *
 **/

#include "zimino_pDetection.h"
#include <unistd.h>
#include <iostream>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

/* The function is given a set of laserscan-data,
 and creates objects for each leg detected. */

bool handlePeopleDetection (ULaserData * pushData, std::vector<std::vector<UPosition> > * zLegsAsPoints)
{
 //saves two files in the given directories if true
 bool DEBUG = false;
 if(DEBUG) printf("zimino:pDetection is in DEBUG-mode (a lot of output on console)");

 // DEBUG
 char saveDir[100] = "/home/mikkel/Dropbox/Bachelor/zimino_scanfiles/";
 char saveFile[100] = "/home/mikkel/Dropbox/Bachelor/zimino_scanfiles/";
 // DEBUG END

 ULaserData *data = pushData;

 int r, i, j, k;
 int minR, minR1; // range in range units
 int counter1 = 0;
 int cou1 = 0;
 int cou2 = 0;
 const int Laserprecision = 181;
 int clausterCount, tjek;
 int testCount = 0;
 int count = 0;
 int testNum;
 int tester = 0;
 int sorted = 0;
 int finalCount = 0;

 // int finalKlyngeAnt[Laserprecision];
 int longestDistNum = 0;
 int klyngeLength[Laserprecision];
 int finalKlyngeSeperator[Laserprecision];
 double smallestMiddleVal;
 double shortest1 = 0;
 double shortest2 = 0;
 double maxMeasureDist = 0;
 double maxDistClausters = 0;
 int finalKlynge[Laserprecision];
 int counterAll = 0;
 double pPIFR[999]; // max registreringer i personindex kan

 // volde probs
 double pPIFAngle[999]; // max registreringer i

 // personindex kan volde probs
 double pPIFRAll[999];
 double pPIFAngleAll[999];
 double personRange = 0.0;
 double personTestDist = 0.0;
 double minDistCal = 0;
 double maxDistCal = 0;
 double xCoord, yCoord, xPrevCoord, yPrevCoord;
 double aTempCal = 0.0;
 double bTempCal = 0.0;
 double klyngeX[Laserprecision][Laserprecision];

 Detection and tracking of people and moving objects Mi 77

 Mikkel Viager, January 2011

 double klyngeY[Laserprecision][Laserprecision];
 double klyngeRange[Laserprecision][Laserprecision];
 double aCal2[181];
 double bCal2[181];
 double shortest = 4.0;
 double sumXY, sumX, sumY, sumXX;
 double longestDist = 0.0;

 double tempDist;
 unsigned long serial;
 float closestMeasurement = 1000;

 // saveFile = "All";
 // SIKRE AT KLYNGE ER Tï¿½MT
 // Ensure the variable for cluster-mesurements are empty
 for (i = 0; i < Laserprecision; i++)
 {
 for (j = 0; j < Laserprecision; j++)
 {
 klyngeX[i][j] = 0;
 klyngeX[i][j] = 0;
 klyngeRange[i][j] = 0;
 }
 }

 //DEBUG
 // Files to write to
 FILE *FileThirdSort = NULL;
 FILE *FileUnsorted = NULL;
 if(DEBUG){
 // The stringconcatination ensures that the files are
 // created/overwritten in the correct path
 FileThirdSort = fopen (strcat (saveDir, "3sort.txt"), "w");
 strcpy (saveDir, saveFile);
 FileUnsorted = fopen (strcat (saveDir, "unsorted.txt"), "w");
 strcat (saveFile, "default");
 strcat (saveFile, ".txt");
 }
 //DEBUG END

 // Ensures that scandata is valid
 if (data->isValid ())
 {

 // make analysis for closest measurement
 minR = 100000;
 minR1 = 100000;
 serial = data->getSerial ();

 // gets data scanned
 for (i = 0; i < data->getRangeCnt (); i++)
 {
 // range are stored as an integer in current units
 r = *data->getRange (i);
 // test if the object is the closer than the given max
 // distance to object set
 if (r < minR)
 {
 count = count + 1;
 }
 // Person scan tests up to 3 meters from robot
 personTestDist = 3.00;

 // Converts data to meter-format
 switch (data->getUnit ())
 {
 case 0:
 personRange = double (r) * 0.01;

 break; // cm
 case 1:
 personRange = double (r) * 0.001;

 break; // mm
 case 2:

78 Detection and tracking of people and moving objects
.

Mikkel Viager, January 2011

 personRange = double (r) * 0.1;

 break; // 10cm
 default:
 personRange = 20.0;
 }
 // Finding the closest object to robot
 if (personRange < closestMeasurement)
 {
 closestMeasurement = personRange;
 }
 // ////////////
 // Data about pPIF (possible Person In Front)
 // PossiblepersonInFront Range
 // Saves all data in this variable
 pPIFRAll[counterAll] = personRange;

 // PossiblePersonInFront Angle
 pPIFAngleAll[counterAll] = data->getAngleDeg (i);

 // Updating counter
 counterAll++;

 // Saves data that lies between reasonable range from
 // laserscanner in this variable
 if ((personRange < personTestDist) and (r >= 20))
 {
 // PossiblepersonInFront Range
 pPIFR[counter1] = personRange;
 // PossiblepersonInFront Angle
 pPIFAngle[counter1] = data->getAngleDeg (i);
 // counter update
 counter1++;
 }
 }

 for (i = 0; i < counter1; i++)
 {
 if (i > 0)
 {
 // Transform data inside the reasonable range to x and
 //
 // y-coordinates
 xCoord = cos (pPIFAngle[i] * M_PI / 180.0) * pPIFR[i];
 yCoord = sin (pPIFAngle[i] * M_PI / 180.0) * pPIFR[i];
 xPrevCoord = cos (pPIFAngle[i - 1] * M_PI / 180.0) * pPIFR[i - 1];
 yPrevCoord = sin (pPIFAngle[i - 1] * M_PI / 180.0) * pPIFR[i - 1];
 aTempCal = 0.0;
 bTempCal = 0.0;

 // The resonable distance between the legs is decided
 // from the the distance to the mesurements (0.0175
 // meters in each side pr. meter to the robot plus a
 // bufferdistance of 2centimeters, see calculations)
 maxMeasureDist = ((0.0175 + 0.0175) * pPIFR[i] + 0.02);

 // test two related mesurements
 if (sqrt
 (pow ((xCoord - xPrevCoord), 2) +
 pow ((yCoord - yPrevCoord), 2)) < maxMeasureDist)
 {

 // Inserts first element in cluster
 if (cou2 == 0)
 {
 // Converted to real x and y-coordinates
 klyngeX[cou1][cou2] = -yPrevCoord;
 klyngeY[cou1][cou2] = xPrevCoord;
 klyngeRange[cou1][cou2] = pPIFR[i - 1];
 cou2++;
 }
 // Inserts current element in cluster
 klyngeX[cou1][cou2] = -yCoord;
 klyngeY[cou1][cou2] = xCoord;
 klyngeRange[cou1][cou2] = pPIFR[i];

 Detection and tracking of people and moving objects Mi 79

 Mikkel Viager, January 2011

 cou2++;
 }
 // Does not belong to this cluster, and create a new
 // one.
 else if (cou2 > 0)
 {
 // The length of cluster
 klyngeLength[cou1] = cou2;
 cou1++;
 cou2 = 0;
 }
 }
 }

 // Close last cluster
 if (cou2 > 0)
 {
 // The length of cluster
 klyngeLength[cou1] = cou2;
 cou1++;
 cou2 = 0;
 }
 // Logistics calculation of linear regression
 clausterCount = 0;
 testCount = 0;
 sorted = 0;

 // //// TJEK OP Pï¿½ DENNE //////
 // // Skal nok ikke bruges sï¿½ rettelse udelades
 while (klyngeX[clausterCount][0] != 0 or klyngeY[clausterCount][0] != 0)
 {
 if (klyngeX[clausterCount][2] != 0 or klyngeY[clausterCount][2] != 0) // nr
 {
 sumXY = 0;
 sumX = 0;
 sumY = 0;
 sumXX = 0;

 while (klyngeX[clausterCount][testCount] !=
 0 and klyngeY[clausterCount][testCount] != 0)
 {
 sumXY +=
 klyngeX[clausterCount][testCount] * klyngeY[clausterCount][testCount];
 sumX += klyngeX[clausterCount][testCount];
 sumY += klyngeY[clausterCount][testCount];
 sumXX += pow (klyngeX[clausterCount][testCount], 2);

 testCount++;
 }

 aCal2[clausterCount] =
 ((testCount * sumXY) - (sumX * sumY)) / ((testCount * sumXX) - pow (sumX, 2));
 bCal2[clausterCount] = (sumY - (aCal2[clausterCount] * sumX)) / testCount;
 testCount = 0;
 clausterCount++;
 }
 else
 {
 sorted++;
 clausterCount++;
 }
 }

 for (i = 0; i < cou1; i++)
 {
 if (klyngeLength[i] > 2)
 {
 // Minumum distance of leg-width mesured. Once again
 // the variable of 0.0175meters is used to to
 // calculate the buffer-distance and a standard
 // leg-with of 8centimeters
 minDistCal = 0.08 - klyngeRange[i][0] * 0.0175 * 2;
 maxDistCal = 0.35;
 tjek = 0;

80 Detection and tracking of people and moving objects
.

Mikkel Viager, January 2011

 // Absolut shortest leg-width possible
 shortest = 4.0;

 // testing parameters for the comming tests
 bool test1 = false;
 bool test2 = false;
 bool test3 = false;
 bool test4 = false;

 // This switch makes for special-cases for specified
 // cluster-length. For example if clusters with 3 or 4
 //
 // mesurements should be tested different than others
 // because of the few mesurements..
 switch (klyngeLength[i])
 {
 default:
 double buf = 0.005 * klyngeRange[i][(int) floor (klyngeLength[i] / 2)];

 // minimum width of cluster in meters
 if (sqrt
 (pow
 ((klyngeX[i][klyngeLength[i] - 1] -
 klyngeX[i][0]),
 2) + pow ((klyngeY[i][klyngeLength[i] - 1] -
 klyngeY[i][0]), 2)) > minDistCal)
 {
 test2 = true;
 }
 // maximum width of cluster
 if (sqrt
 (pow
 ((klyngeX[i][klyngeLength[i] - 1] -
 klyngeX[i][0]),
 2) + pow ((klyngeY[i][klyngeLength[i] - 1] -
 klyngeY[i][0]), 2)) < maxDistCal)
 {
 test3 = true;
 }
 // cluster-width in mesurements is an equal number
 if (klyngeLength[i] % 2 == 0)
 {
 if (((klyngeRange[i]
 [(int) klyngeLength[i] / 2 - 1]) <
 klyngeRange[i][0]
 and (klyngeRange[i]
 [(int) klyngeLength[i] / 2 - 1] <
 klyngeRange[i][klyngeLength[i] - 1]))
 or ((klyngeRange[i]
 [(int) klyngeLength[i] / 2]) <
 klyngeRange[i][0]
 and (klyngeRange[i]
 [(int) klyngeLength[i] / 2] <
 klyngeRange[i][klyngeLength[i] - 1])))
 {
 test1 = true;
 }
 else
 {}
 }
 else
 {
 // hvis kun 3 ekstra tjek pï¿½ afstanden mellem
 // punkterne

 // If cluster consist of 3 mesurements, a
 // further check on the distance between
 // mesurements is done
 if (klyngeLength[i] == 3)
 {

 if ((klyngeRange[i]
 [(int) floor (klyngeLength[i] / 2)] -
 buf < klyngeRange[i][0])
 and (klyngeRange[i]

 Detection and tracking of people and moving objects Mi 81

 Mikkel Viager, January 2011

 [(int) floor (klyngeLength[i] / 2)]
 - buf < klyngeRange[i][klyngeLength[i] - 1]))
 {
 test1 = true;
 }
 else
 {}
 }
 // if width is not equal then it defines which
 //
 // mesurements in the middle is closest
 // related in meters (decides the middle of a
 // possible leg)
 else
 {
 if (sqrt
 (pow
 (klyngeX[i][klyngeLength[i] - 1] -
 klyngeX[i][0],
 2) + pow (klyngeY[i][klyngeLength[i] -
 1] - klyngeY[i][0], 2)) < 0.22)
 {
 for (j = -1; j <= 1; j++)
 {
 if (klyngeRange[i]
 [(int) floor (klyngeLength[i] / 2) + j] < shortest)
 shortest = klyngeRange[i][(int) floor (klyngeLength[i] / 2)];
 }
 if ((shortest <
 klyngeRange[i][0]) and (shortest <
 klyngeRange[i][klyngeLength[i] - 1]))
 {
 test1 = true;
 }
 else
 {}
 }
 else
 {}
 }

 }

 // If the previous test sucseeded and cluster
 // consist of more than 6 mesurements it could be
 // a possible pair of legs
 if (test1 == false and klyngeLength[i] > 6)
 {
 for (j = 1; j < klyngeLength[i] - 1 - 1; j++)
 {

 tempDist =
 sqrt (pow
 ((klyngeX[i][j] -
 klyngeX[i][j + 1]),
 2) + pow ((klyngeY[i][j] - klyngeY[i][j + 1]), 2));

 // divides a possible leg-pair where the
 // distance between the measurements i
 // largest.
 if (tempDist > longestDist)
 {
 // divide between j and j+1
 longestDist = tempDist;
 longestDistNum = j;
 }
 }
 // Resets distance-variables to a nonpossible
 // large distance
 shortest1 = 4.0;
 shortest2 = 4.0;
 tester = 0;

 // test if the one of the divided clusters is

82 Detection and tracking of people and moving objects
.

Mikkel Viager, January 2011

 // smaller than 3 mesurements or
 if (klyngeLength[i] - longestDistNum < 3)
 tester++;;
 if (longestDistNum < 3)
 tester++;
 // if one side, of the cluster dived, length
 // equal 3 mesurements
 if (longestDistNum == 3)
 {
 // Test if middlepoints of cluster is
 // closer to robot. The described curved
 // line earlier.
 if (klyngeRange[i][1] <
 klyngeRange[i][0] and klyngeRange[i][1] < klyngeRange[i][2])
 tester++;
 }
 // if the other side, of the cluster dived,
 // length equal 3 mesurements
 if (klyngeLength[i] - longestDistNum == 3)
 {
 // Test if middlepoints of cluster is
 // closer to robot. The described curved
 // line earlier.
 if (klyngeRange[i][klyngeLength[i] - 2] <
 klyngeRange[i][longestDistNum +
 1] and
 klyngeRange[i][klyngeLength[i] - 2] <
 klyngeRange[i][klyngeLength[i] - 1])
 tester++;
 }
 // test if the first divided cluster have a
 // width larger than three
 if (longestDistNum > 3)
 {
 // forloop that test every value i cluster
 //
 // except the first and last regarding
 // curved regression
 smallestMiddleVal = 4.0;
 for (k = 1; k < longestDistNum - 1; k++)
 {
 if (klyngeRange[i][k] < smallestMiddleVal)
 smallestMiddleVal = klyngeRange[i][k];
 }
 // test up on the closest middleval in the
 //
 // cluster
 if (smallestMiddleVal <
 klyngeRange[i][0] and smallestMiddleVal <
 klyngeRange[i][longestDistNum - 1])
 tester++;
 }
 // test if the second divided cluster have a
 // width larger than three
 if (klyngeLength[i] - longestDistNum > 3)
 {
 smallestMiddleVal = 4.0;
 // forloop that test every value i cluster
 //
 // except the first and last regarding
 // curved regression

 for (k = longestDistNum + 2; k < klyngeLength[i] - 1; k++)
 {
 if (klyngeRange[i][k] < smallestMiddleVal)
 smallestMiddleVal = klyngeRange[i][k];
 }
 // test up on the closest middleval in the
 //
 // cluster
 if (smallestMiddleVal <
 klyngeRange[i][longestDistNum +
 1] and smallestMiddleVal <
 klyngeRange[i][klyngeLength[i] - 1])
 tester++;

 Detection and tracking of people and moving objects Mi 83

 Mikkel Viager, January 2011

 }

 if (tester == 2)
 {
 test4 = true;
 }
 else
 {}

 }
 // nï¿½dtest tjekker op pï¿½ de to punkter ved siden
 // af

 break;
 }

 //
 if (test3 == true and test2 == true) // and
 {
 // saves internal the number and amount of
 // measurements to the final decision about
 // person-detection
 // if the first test is passed directly insertion
 if (test1 == true)
 {
 finalKlynge[finalCount] = i;
 finalCount++;
 }
 // if the first test is passed directly insertion
 else if (test4 == true) // test4==true
 {

 // I KNOW::::::::: EASY FIX WITH FOLLOWUP evt
 // ren indsï¿½ttelse i fil pï¿½ dette tidspunkt
 // eller endda hurtigere
 finalKlynge[finalCount] = i;
 finalKlyngeSeperator[finalCount] = 1; // longestDistNum;
 finalCount++;
 }

 testNum = 1;
 // skud pï¿½ maks benbredde og min benbredde 10 og
 // 40cm (et henholdsvis 2 ben
 // desuden antages det at et ben er rundt dvs
 // robotten registrerer en person som buet
 }
 }
 }

 // HUSK AT ï¿½NDRE 180 TILBAGE TIL LASERPRECISION
 int z;

 //DEBUG
 if(DEBUG){
 // Save data for every degree mesured
 for (z = 0; z < 180; z++)
 {
 // Saves data fullfilling all tests
 fprintf (FileUnsorted, "%g %g \n",
 -sin (pPIFAngleAll[z] * M_PI / 180.0) *
 pPIFRAll[z], cos (pPIFAngleAll[z] * M_PI / 180.0) * pPIFRAll[z]);
 }
 }
 //DEBUG END

 maxDistClausters = 0.30; // fixed size

 for (i = 0; i < finalCount; i++)
 {
 // test the clusters op against each other from left
 // against right
 if (finalKlyngeSeperator[i] == 0 and i < finalCount - 1)
 {

84 Detection and tracking of people and moving objects
.

Mikkel Viager, January 2011

 for (k = i + 1; k < finalCount; k++)
 {
 // Test of the distance between the to clusters
 if (sqrt (pow ((klyngeX[finalKlynge[i]]
 [klyngeLength[finalKlynge[i]] - 1] -
 klyngeX[finalKlynge[k]][0]),
 2) + pow ((klyngeY[finalKlynge[i]]
 [klyngeLength
 [finalKlynge[i]] - 1] -
 klyngeY[finalKlynge[k]][0]), 2)) < maxDistClausters)
 {
 }
 }
 }
 }

 //Added by Mikkel Viager, s072103@student.dtu.dk

 //convert saved data to Upositions, and save to the pointvector in the legvector

 std::vector<UPosition> tempVec;
 UPosition pos;

 for (i = 0; i < finalCount; i++)
 {
 (*zLegsAsPoints).push_back(tempVec);
 if(DEBUG)printf("\n Leg no. %d\n",i);

 for (j = 0; j < klyngeLength[finalKlynge[i]]; j++)
 {
 //transfer to odometry coordinates
 double odoX = klyngeY[finalKlynge[i]][j];
 double odoY = -klyngeX[finalKlynge[i]][j];

 pos.clear();
 pos.add(odoX,odoY,0);
 (*zLegsAsPoints)[i].push_back(pos); //push to the i'th leg
 if(DEBUG)(*zLegsAsPoints)[i][j].print("point:");
 }

 }

 // end added

 //DEBUG
 if(DEBUG){

 for (i = 0; i < finalCount; i++)
 {
 for (j = 0; j < klyngeLength[finalKlynge[i]]; j++)
 {
 //transfer to odometry coordinates
 double odoX = klyngeY[finalKlynge[i]][j];
 double odoY = -klyngeX[finalKlynge[i]][j];

 // Printes all final elements
 fprintf (FileThirdSort, "%g %g %i \n", odoX, odoY, i);
 }

 }
 // Closing files
 fclose (FileThirdSort);
 fclose (FileUnsorted);
 }//DEBUG END
 }
 else{
 printf("ERROR: SCAN DATA IN ZIMINO-FUNC NOT VALID!");
 }
 return true;
}

