Sensor-Coupled Fractal Gene Regulatory
Networks for Locomotion Control of a Modular
Snake Robot

Payam Zahadat, David Johan Christensen, Serajeddin Katebi, and Kasper Stoy

Abstract. In this paper we study fractal gene regulatory network (FGRN) control-
lers based on sensory information. The FGRN controllers are evolved to control a
snake robot consisting of seven simulated ATRON modules. Each module con-
tains three tilt sensors which represent the direction of gravity in the coordination
system of the module. The modules are controlled locally and there is no explicit
communication between them. So, they can synchronize implicitly using their sen-
sors, and coordination of their behavior takes place through the environment. In
one of our experiments, all the three tilt sensors are available for the FGRNs and a
simple controller is evolved. The controller is a linear mapping of one input sensor
to the output. It is only based on one sensor input and ignores the other sensors as
well as the regulatory part of the network. In another experiment, the controller’s
input uses one of the other sensors that carries less information. In this case, the
evolved controller blends sensory information with the regulatory network capa-
bilities to come up with a proper distributed controller.

1 Introduction and Related Work

Modular robots are distributed robots made up from a number of mechanically
coupled modules where each module is typically controlled by its own local con-
troller. These robots are distributed and dynamic by nature and they have limited
inter-modular communication and processing capabilities. In this paper we evolve
FGRNSs as distributed controller for modular robots. The purpose of the paper is to
study the FGRN controllers based on sensor information. The FGRNs are evolved
as local controllers of modules. Each FGRN controller receives inputs provided by

Payam Zahadat - David Johan Christensen * Kasper Stoy
Modular Robotics Lab, The Maersk Mc-Kinney Moller Institute,
University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark

Payam Zahadat - Serajeddin Katebi
Department of Computer Science and Engineering, School of Engineering,
Shiraz University, Shiraz, Iran

A. Martinoli et al. (Eds.): Distributed Autonomous Robotic Systems, STAR 83, pp. 517-530]
springerlink.com © Springer-Verlag Berlin Heidelberg 2013

518 P. Zahadat et al.

the local sensors of the module containing it. The usefulness of the sensor infor-
mation and the FGRN capability to make proper output patterns are investigated in
this paper.

Gene regulatory network (GRN) is a network of genes which interact with each
other and regulate each other’s activation behavior. Instead of direct mapping of
genotypes to phenotypes, nature implements an indirect development of a pheno-
type using GRNS. In biological cells, genome consists of a number of genes which
encode proteins. Proteins play different roles in a cell. They can represent input
signals; operate as intermediate substrates to drive the interaction between genes,
and shape structure or behavior of the cell which can change during time. Proteins
interact with each other and with the genes and this is an ongoing process in the
whole life time of a cell. Complex behavior of a cell is the result of this interac-
tion. Production of a protein can be initiated by signals coming from the environ-
ment of the cell. The environment might be either the outside world or even the
neighboring cells. In this way, the local environment can influence the cell’s inner
dynamics and changes the behavior of the cell. Differentiation of cells in a multi-
cellular creature takes place through similar processes. In a multi-cellular creature,
all cells contain the same genome, but based on the local environment of the call
they differentiate during development and may behave differently.

In the field of computation systems different GRN models [2, 12, 14, 18] have
been defined to indirectly map genotype to phenotype in order to make more
complex phenotypes and behaviors. In some works, models of GRNs are evolved
for making mathematical output functions [19], developing neural networks for
controlling robots [9, 11, 16] or specifying the morphology of 3D organisms [10].
Also, GRN models have been used to develop the morphology of robots as well as
their neural network controllers [6]. A special type of GRNs, which utilizes fractal
proteins as the intermediate substrate of gene interaction, is called FGRN [3]. The
recursive and self-similar nature of fractal proteins make the fractal genetic space
evolvable, complex, and redundant [3, 4, 5]. In a number of previous works,
FGRNS are evolved to do different tasks such as producing desired patterns, con-
trolling conventional robots and motion planning [4, 26]. They have also been
used [26] as local controllers of modular robots in a simpler version than the cur-
rent paper such that each FGRN controller selects between different possible
commands that can be executed by every module and without any dynamic influ-
ence from the outside environment.

The main contribution of this paper is further investigation of the usefulness of
FRGN for control of modular robots; in particular, we extend on previous work
[26] by looking at how sensor-inputs can be integrated with FGRN. The control-
lers we develop in this paper are tied to the physics of the ATRON self-
reconfigurable robot and are thus not directly applicable to control of other
modular robots such as M-TRAN [20], SuperBot [22], CKBot [25] due to their
differences in weight, actuator strength, placement of sensors, etc. However, it is a
general problem of all embodied controllers that they rely on the specific physical
properties of the robot on which they run. For the same reason, the controllers
cannot be directly applied to control of non-reconfigurable snake robots either (see
[23] for an overview). However, the idea of a model-free approach relying on

Sensor-Coupled FGRNs for Locomotion Control of a Modular Snake Robot 519

tilt-sensors for both local control and implicit synchronization between segments
of the snake may be transferable to other robots as well. More importantly, we ex-
pect our development method based on evolution of FGRN can be applied to these
systems. In modular and multi-segment robotics, controllers for snake robots have
been extensively studied based on gait control tables [24], Central Pattern Genera-
tors (CPGs) [15, 17], artificial hormones [13], and role-based control [22]. How-
ever, opposed to our controllers these controllers except [17] are open-loop and in
the case of the latter two rely on explicit communication between modules for
synchronization.

The paper is organized as follows. The next section reviews the biological in-
spiration and computational implementation of FGRN. Then, the application of
FGRN as a sensor-based controller is described. Consequently, the controllers
which respectively are evolved with unrestricted and restricted access to sensor in-
formation are investigated and the achieved behaviors are compared.

2 Gene Regulatory Networks

2.1 Biological Inspiration

Development of phenotypes can be thought of as a product of interaction between
genes and proteins in their environment. Proteins drive development and function-
ing of a cell and are used for communication between a cell and its environment
that might include other cells.

A cell contains a genome and a cytoplasm which are surrounded by a mem-
brane (Fig. 1) [1]. The membrane separates the interior of a cell from the outside
environment. Receptor proteins are embedded in the membrane and control the
movement of environmental proteins into the cell. The cytoplasm contains a com-
pound of proteins inside the cell. The genome consists of a set of genes. Every
gene contains a sequence that encodes a protein (coding region) and a sequence
that determines the conditions for activation or suppression of that gene (promoter
region) (Fig. 1).

An active gene expresses and produces its appropriate protein as encoded in its
coding region. For a gene to be activated, the similarity between the cytoplasm
content and the promoter region of the gene has to reach a threshold.

Receptor Proteins
|

membrane

DI’T'IE

Promoter Region Coding Region

V22227222

Cell Gene

Fig. 1 An example cell (left) and a gene (right)

520 P. Zahadat et al.

The cytoplasm content is altered by proteins produced by genes inside the
cell or the environmental proteins which have entered the cell passing through
receptors.

During the development of a cell, the protein content of the cytoplasm might
match against the promoter of some genes and get them to suppress or express
proteins. Every produced protein will enter to the cytoplasm and alter its content.
The new content, in turn, affects the expression of genes in the next step. In this
way, every protein inside a cell either produced by the genes or from environment
might influence the expression of the genes directly or indirectly. On the other
hand, the functional behavior of a cell is determined by special proteins in the cell
and is controlled by the cytoplasm content.

The ongoing interaction between proteins and genes continues for the whole
lifetime of a cell and is considered a network of genes which regulate the expres-
sion of each other and is called a Gene Regulatory Network (GRN).

2.2 Fractals and Gene Regulatory Networks

In a series of works reported by Bentley [3, 4, 5] a protein model called fractal
protein is developed as an abstraction of the protein substance of gene regulatory
networks in an evolutionary system.

Fractal proteins are square windows on the Mandelbrot fractal set with a fixed
resolution (Fig. 2). Each fractal protein is represented by a square matrix of integ-
er values, but it is encoded by only three values (X, y, z). (X, y) is the coordination
of the center of the window on the fractal set and z is the length of the sides.
Therefore, by changing these three values we can reach different locations and dif-
ferent scales of the fractal set which benefit the evolvability due to the self-
similarity found in fractals. This property makes a desirable redundancy which
means the same potential solution can be found in indefinite number of points in
genotype space and it facilitates the evolutionary process. Fig. 2 represents an ex-
ample fractal protein.

In addition to a square matrix of integer values, a single integer value relates to
each fractal protein as its concentration level. The concentration level represents
the current amount of the protein. The value increases when more of the protein is
produced and decreases slowly over time to resemble normal degradation that
happens in biological cells. The value is constant for the receptor proteins.

—* z=-04528596474353501

N

(% =-0.4242899541823299, y = 0.6714986285914406)

Fig. 2 An example fractal protein and the three values which specify it

Sensor-Coupled FGRNs for Locomotion Control of a Modular Snake Robot 521

Fractal proteins can merge together and make protein compounds. A fractal
protein compound is represented by a square matrix of integer values in the same
way as fractal proteins. Merging is a pixel-wise max operation between the cor-
responding matrices. See Fig. 3(a) for an example.

e 4o« oF
o

c3

Fig. 3 Fractal Protein Operators: a) Merge: Two proteins al and a2 are merged as a3. b)
Match: The cytoplasm protein compound b1l matches against the promoter of a gene (b2)
and b3 is resulted as the calculated absolute difference. c) Mask: Environmental protein c1
passes through the receptor protein c¢2 and some portions of it (c3) which are corresponding
to non-black pixels of c2 are allowed to enter the cytoplasm.

The cytoplasm of an FGRN cell is a compound of all the proteins inside the
cell. Every protein that is produced in the cell or enters the cell from outside will
be merged into the content of the cytoplasm.

A genome in an FGRN cell consists of a set of genes. Genes consist of a se-
quence of values representing promoter region, coding region, threshold parame-
ters, and type of the gene.

The coding region contains the three real values which encode a fractal protein.
In the same way as the coding region, the promoter region consists of three real
values that encode a square matrix of fractal values as well. This matrix works as a
window that will be put on the cytoplasm protein compound matrix and is used to
calculate the matching degree between the promoter of the gene and cytoplasm
content (See Fig. 3(b) for an example). The matching degree along with the total
concentration of matched proteins on promoter region, determine the degree of ac-
tivation (or suppression) of the gene and might specify its protein production rate.
Threshold parameters are used to calculate the matching degree and protein pro-
duction rate of each gene. To assimilate different types of genes in a cell, every
gene belongs to one of the types represented in Table 1. Each gene contains an in-
teger value that represents its type. The lifetime of an FGRN cell consists of a
number of developmental cycles which can be summarized as the steps
represented in Fig. 4. For more detailed descriptions of FGRN systems and the
corresponding formulas see [3, 4, 26].

522 P. Zahadat et al.

Table 1 Different gene types

Gene Type Description

Regulatory Includes both promoter and coding region. Its encoded protein will be produced
and merged into cytoplasm and participate in regulation of gene expression.

Environmental Determines the proteins which might be present in the environment of the cell.

Cell receptor ~ Contains a coding region and produces a receptor protein. Receptor proteins
merge together and act as a mask to permit variable portions of environmental
proteins to the cytoplasm (See Fig. 3(c)).

Behavioral Comprises a promoter region and a coding region. The values in the coding re-
gion can directly participate to determine the outputs of the cell.

Produce receptor _ Pass the envimnmental proteins through
Produce environmental proteins " M

> receptor and merge them into the cytoplasm

oy

Far every behaviomal gene
Ifthe content of otoplasm
matches the promoter

For every regulatory gene Update concentration
|f the content of cvtoplasm lewel of proteirs inthe
matches the promoter oytoplsm

v
Express the ooding region
and rnerge the produced

Utilize the coding region o
spedfy the cell's outputs

proteininto the cytoplasm

Fig. 4 A developmental cycle of an FGRN cell

3 Evolving FGRN Local Controllers with Tilt-Sensor Input

In this work, FGRN controllers are evolved for the ATRON robot [21] which is a
homogenous, lattice-based self-reconfigurable modular robot. An ATRON module
weighs 0.850kg and has a diameter of 110mm. A module consists of two hemis-
pheres which can rotate infinitely relative to each other with a speed of 60 degrees
per second. Each hemisphere contains two passive (bars) and two active connec-
tors (hooks), see Fig. 5.

Fig. 5 From left to right: An ATRON module, a seven-segment snake robot

Sensor-Coupled FGRNs for Locomotion Control of a Modular Snake Robot 523

Simulation experiments are performed in an open-source simulator named Uni-
fied Simulator for Self-Reconfigurable Robots (USSR) [8]. The simulator is based
on Open Dynamics Engine which provides simulation of collisions and rigid body
dynamics. Physical forces like gravity and friction are implemented and the para-
meters, e.g. strength, speed, weight, etc., has been calibrated with the existing
hardware. The physical validity of the mechanical simulation has been demon-
strated in the previous works [7] where the controllers were successfully trans-
ferred from simulation to the real modules. The implemented sensors are ideal tilt
sensors and not still verified.

FGRN local controllers with access to tilt-sensor inputs are evolved. The con-
troller is evolved for a snake-shaped robot consists of seven ATRON modules
(See Fig. 5) and there is no explicit communication or synchronization between
the modules. Every module contains three tilt sensors as (TiltX, TiltY, TiltZ). The
sensors specify the direction of gravity related to the coordination system of
the module (Fig. 5). The initial tilt sensor values of a module are different for the
neighbor modules because of the positioning of the connectors in ATRON. The
initial values are (0, -90, 0) for the modules in the odd positions of the snake and
(-90, 0, 0) for the ones in the even positions.

Evolution searches for FGRN genomes which are used in the local FGRN con-
trollers to solve a locomotion task. To evaluate a genome, an identical version of
genome is copied to all the FGRN cells which are situated in the modules. Each
cell receives tilt sensor values from the module’s local sensors. Initially, one input
gene is related to each sensor. The level of protein expression of each input gene is
determined by the value received from the related sensor. The development cycle
in Fig. 4 is performed and the new concentration level of each protein in the cy-
toplasm is specified. In order to make an actuator command for each module in
every step, each module independently run its own FGRN cell for one develop-
mental cycle and receives an output from the cell. The FGRN output is calculated
on the basis of activation level of behavioral genes and the real values of the cod-
ing region [4]. The output value received from the cell is scaled and used as the

Fractions of Inpot—
proteins pass the
cell receptor and
enterthe cytoplasm

Regulstary-genes
make regulatory

proteins which enter
he cvtoplasm

Input genes
make input
proteins

Qutput genes
make cell’s
output and sgnd
itto the mo/d’i.lle

ell's output is scaled and used as
the actuator’s absolute position

Module’s
Actuatar

Fig. 6 Each module contains an FGRN controller that specifies the actuator’s absolute
position

524 P. Zahadat et al.

absolute position of the module’s actuator which is between -180 to 180 degrees
(See Fig. 6). Modules use the nearest rotation angle to reach the desired absolute
position. Robot runs for a specific time period (50 sec.) and fitness is simply eva-
luated as the average speed of locomotion of the robot. For each evolutionary run,
a population of 50 FGRN genomes is evolved for 250 generations using a version
of steady-state genetic algorithm with lifespan limits [2]. Each genome is initia-
lized with randomly generated regulatory, receptor, environmental, and behavioral
genes. Evolution is allowed to regulate the number of each type of genes (See
[3, 26] for more details).

4 Experimental Results and Discussion

In order to investigate the usefulness and properties of integrating sensors with
FGRN controllers for the snake robot, we performed two experiments. First we
studied the FGRNSs that are evolved when the input is available from all of the lo-
cal tilt sensors and observed the usefulness of the sensor-inputs. Then we ex-
amined the ability of FGRN to produce proper output patterns when the input is
limited to a sensor with less information.

4.1 Evolving Controllers with Unrestricted Access Sensors

In order to study if FGRN controller can gain any benefit from the tilt sensor in-
puts, we evolved the controllers with access to all the three local sensors. Evolu-
tion was free to use all or some of the sensor inputs for the controllers. The
evolved controllers were evaluated in the locomotion task and the speed of loco-
motion was measured as the distance between the initial position and the end posi-
tion of the center of mass of the robot and used as the fitness value. We repeated
the experiment for 10 independent runs. The average speed of the best controllers
from the ten runs was 0.0334 m/s (with standard deviation of 0.0032) and all the
runs evolved controllers that generated rolling locomotion.

In order to investigate the effects of different sensor values in producing robot
behavior, we limited access of the evolved controller to different combinations of
the sensors and set the others to zero. The achieved results demonstrated that for 9
runs out of 10, there is no detectable effect for the TiltY and TiltZ sensors. In the
only other run, output was produced based on both TiltY and TiltZ sensor values
and no use of TiltX detected. This controller had the speed of 0.027 m/s.

In the same way as the sensor values, we removed regulatory genes of the
evolved FGRN controllers in order to investigate their influence on the controllers’
behavior. The investigation demonstrated that only in one of the evolved solutions,
regulatory genes were participating in producing the controllers’ output. No signifi-
cant difference was observed between the speed of this controller and the rest.

Based on the above investigations, for the eight runs out of the 10 runs, the
evolved controllers produced output merely from TiltX sensor value. This means
the controller directly maps one input to the output which is a simple controller for
this robot.

Sensor-Coupled FGRNs for Locomotion Control of a Modular Snake Robot 525

AAAA,
SAAFY

0sec Time 25 sec

90

-90
90

Fig. 7 Internal dynamics of the controllers of the first experiment for the two first modules
of the snake. Green lines represent sensor value, black lines represent the output for the ac-
tuator absolute position, and the gray lines represent the actuator’s real position.

For a typical evolved FGRN controller, the internal dynamics of the modules
are represented in Fig. 7. As it is demonstrated in the figure, the output values can
be simply calculated using a linear equation. We derived the equation from the re-
lated input and output data as:

Output = TiltX * 0.33 — 60.8

4.2 FGRN with Restricted Sensor Information

In the second experiment, we investigated whether the regulating dynamics of
FGRN can make proper output patterns when the instant values of input sensors
doesn’t carry enough information. As the results of the last experiment demon-
strated, TiltZ sensor has no detectable effect in producing the control outputs. It
made us suspect that this sensor doesn’t have enough information for this control
task. Therefore, we first tried to evolve a linear equation solely based on TiltZ
sensor. We implemented a real-valued genetic algorithm to evolve a population of
50 individuals for 250 generations. The experiment was repeated ten times and we
observed that evolution failed to find a proper controller. Then, we evolved
FGRN controllers which have only access to TiltZ sensor value to investigate if
FGRN can exploit this restricted sensor information.

We repeated the evolutionary process for 10 independent runs and observed
different locomotion-types for the best controllers of the different runs. The loco-
motion-types are discussed in three groups. The first group consists of the control-
lers which generate rolling-type locomotion for the robot. In order to study which
parts of the network are involved in the control process, we disabled the sensor
and each of the regulatory genes one by one. In all cases the controller failed to
make proper locomotion. It demonstrates that both regulatory genes and sensor in-
put are used by the controller. The Internal dynamics of one of the best controllers
we achieved in this group is represented in Fig. 8. In order to get an informal im-
pression of the robustness of the controllers in case a module breaks which lead to
restarting controller, we randomly chose a module and restarted its controller to
the initial state during the robot’s run. We repeated the experiment several times
and observed that the robot continues its normal locomotion after a short while.

526 P. Zahadat et al.

The second group includes the controllers that make crawling-type locomotion.
Investigation of the internal dynamics of the controller demonstrates that these so-
lutions are mainly based on the regulatory genes and doesn’t really exploit the in-
put information. We observed that these robots are not robust against randomly
restarting of the controllers.

The third group consists of the controllers which make efficient locomotion
once in a while. Benefiting from the robot’s body accidental flips over, these
controllers sometimes make fast locomotion, and otherwise they do not produce
locomotion. Since evolution only searches for fast controllers and there was no se-
lection pressure towards the robustness and reproducability of the locomotion, the
large fitness that these controllers gain by the accidental success is enough to pick
them up among the other controllers in the evolutionary process. These controllers
are not robust even during normal locomotion. Average and standard deviation of
speed reached by the different controller groups are shown in Table. 2.

Table 2 Speeds reached by different types of locomotion

All Rolling Crawling Others
Average speed 0.0209 0.0248 0.0168 0.0212
Standard deviation ~ 0.0076 0.0047 0.0015 0.0112

The inner dynamics of a typical controller is represented in Fig. 8. The control-
ler is selected from the rolling-type group which demonstrates an efficient and ro-
bust behavior. As it is represented in the figure, the TiltZ value is zero for all the
modules on the start of the execution. Therefore, there is no difference between
the cells of a robot at the beginning and all of them make the same output for their
module actuators. Rotating actuators as a result of command execution, changes
module’s orientation. This might lead to different TiltZ sensor values for different

©

(=]
n
=]
o

sensor and
output values
regualtory
proteins'
concentration

©
=]
(=]

A

©

=1
[N
[=]
o

sensor and
output values
regualtory
proteins’
concentration

©
[=]
[=]

0 sec Time 25 sec

Fig. 8 Internal dynamics of the selected controller of the second experiment for the two
first modules. Green lines represent the sensor values, black lines represent the output for
the actuator absolute position; and the red and brown lines represent the concentration level
of the two regulatory proteins.

Sensor-Coupled FGRNs for Locomotion Control of a Modular Snake Robot 527

modules. After a short while of chaotic behaviors, modules start to synchronize
and coordinate their behaviors through environmental feedback which is received
in the form of the sensor values.

4.3 Comparison of Behaviors from the Best Evolved Controllers
of the Two Experiments

In order to have an impression of the rolling behavior produced by the best
controllers of each of the two experiments, we studied the actuator’s absolute po-
sitions for one typical controller evolved in the first experiment and one typical
controller from the second one.

Module Time (0-50 sec) .

| NN NN T T

First experiment

Module Time (0-50 sec) .

Second experiment

Fig. 9 Actuators’ absolute positions of all the modules for a typical controller of the first
and second experiments respectively

As it is demonstrated in Fig. 9, the module actuators have oscillatory behaviors.
For the first experiment, the average period of estimated oscillation of the actuator
absolute positions is 6.46 sec (with standard deviation of 0.63). The estimated
phase shifts between the actuator signals of the consecutive modules is
represented in Table 3.

For the second experiment, the average period of oscillation of the actuator ab-
solute positions is 7.6 sec (with standard deviation of 0.2). The estimated phase
shifts of the consecutive modules are represented in Table 3.

528 P. Zahadat et al.

Table 3 Phase shift (per period) between the neighbor modules for the typical controller of
each experiment

Module number #1 #2 #3 #4 #5 #6 #7
first experiment - 0.21 0.52 0.34 0.34 0.41 0.48
second experiment - 0.56 0.37 0.41 0.40 0.36 0.38

It is interesting to note that the phase difference between neighbor modules is
not constant. We suspect this is because modules are subject to different forces
and dynamics depending on their position in the snake.

5 Conclusions

In this paper we explored fractal gene regulatory network controllers for a snake-
shaped modular robot where only the tilt sensor inputs are available for the con-
trollers. First, we provided the controllers with all the three tilt sensor inputs. The
evolved controllers were simple linear equation which exploits only one of the
three sensor inputs and ignores the regulatory abilities. In the next step, we re-
stricted the controller’s access to one of the other sensors and tried to evolve new
linear equation controllers based on this information. Since evolution couldn’t find
the proper controllers, we suspect that the information provided by that sensor is
not enough to be used by such a simple controller.

Then we evolved FGRN controllers with access to this sensor information. The
resulting controllers made appropriate oscillatory output patterns to control the
modules. Investigating the different parts of the FGRN genome demonstrated that
the system exploits both sensor values and regulatory network capabilities to make
the proper controller commands. As it might be expected, the generated outputs of
the controllers were oscillatory patterns shifted for each module. Furthermore, we
performed some preliminary tests towards robustness of the controllers in both
cases and observed that the controllers can drive the robot properly in the case of
random restarting of the controllers during locomotion.

All in all, as an early step to use FGRN as a modular robot controller, it is dem-
onstrated that FGRN can be evolved to both simple and relatively complex con-
trollers depending on the problem. Furthermore, when the capability of FGRN to
make oscillatory patterns is coupled with the sensor information, the controllers
show some degree of adaptability. In this way, the identical controllers generate
different oscillatory outputs when situated in different modules and may provide
some levels of robustness for the whole system. While it has not been verified we
think that the idea of using sensor-coupled FGRN controllers for local control and
synchronization between segments can be transferable to other modular robots as
well.

Acknowledgments. The research leading to these results has received funding from the Eu-
ropean Community's Seventh Framework Programme FP7/2007-2013 - Future Emerging
Technologies, Embodied Intelligence, under grant agreement no. 231688.

Sensor-Coupled FGRNs for Locomotion Control of a Modular Snake Robot 529

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P.: Molecular Biol-
ogy of the Cell, 4th edn., Garland (2002)

Banzhaf, W.: On evolutionary design, embodiment and artificial regulatory net-
works,”. In: Iida, F., Pfeifer, R., Steels, L., Kuniyoshi, Y. (eds.) Embodied Artificial
Intelligence, pp. 284-292. Springer (2004)

Bentley, P.J.: Fractal proteins. J. Genetic Programming and Evolvable Machines 5(1),
71-101 (2004)

Bentley, P.J.: Adaptive Fractal Gene Regulatory Networks for Robot Control. In: Ge-
netic and Evolutionary Computation Conference, Seattle, USA (2004)

Bentley, P.J.: Methods for Improving Simulations of Biological Systems: Systemic
Computation and Fractal Proteins. J. R Soc Interface (2009)

Bongard, J.C., Pfeifer, R.: Evolving Complete Agents Using Artificial Ontogeny. In:
Hara, F., Pfeifer, R. (eds.) Morpho-functional Machines: The New Species (Designing
Embodied Intelligence), pp. 237-258. Springer (2003)

Christensen, D.J., Bordignon, M., Schultz, U.P., Shaikh, D., Stoy, K.: Morphology
Independent Learning in Modular Robots. In: Int. Symposium on Distributed Auto-
nomous Robotic Systems, pp. 379-391 (2008)

Christensen, D.J., Schultz, U.P., Brandt, D., Stoy, K.: A Unified Simulator for Self-
reconfigurable Robots. In: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(2008)

Dellaert, F., Beer, R.: A Developmental Model for the Evolution of Complete Auto-
nomous Agents. In: 4th Int. Conf. on Simulation of Adaptive Behavior, pp. 393—401.
MIT Press, Cambridge (1996)

Eggenberger, P.: Evolving Morphologies of Simulated 3D Organisms Based on Diffe-
rential Gene Expression. In: Husbands, P., Harvey, 1. (eds.) 4th European Conf. on
Artificial Life (ECAL), pp. 205-213. MIT Press, Cambridge (1997)

Federici, D.: Evolving a Neurocontroller through a Process of Embryogeny. In:
Schaal, S., et al. (eds.) 8th Int. Conf. of Simulation and Adaptive Behavior, pp. 373—
384. MIT Press (2004)

Federici, D., Downing, K.: Evolution and Development of a Multi-Cellular Organism:
Scalability, Resilience and Neutral Complexification. J. Artificial Life 12(3), 381409
(2006)

Hamann, H., Stradner, J., Schmickl, T., Crailsheim, K.: Artificial Hormone Reaction
Networks: Towards Higher Evolvability in Evolutionary Multi-Modular Robotics. In:
The 12th Int. Conf. on Artificial Life (2010)

Hornby, G.S., Pollak, B.: The Advantages of Generative Grammatical Encodings for
Physical Design. In: Congress on Evolutionary Computation, pp. 600-607. IEEE
Press (2001)

Ijspeert, AJ., Crespi, A.: Online trajectory generation in an amphibious snake robot
using a lamprey-like central pattern generator model. In: IEEE Int. Conf. on Robotics
and Automation, pp. 262-268 (2007)

Jakobi, N.: Harnessing Morphogenesis. In: Paton, R. (ed.) Int. Conf. on Information
Processing in Cells and Tissues, Liverpool, UK, pp. 29-41 (1995)

Kamimura, A., Kurokawa, H., Yoshida, E., Murata, S., Tomita, K., Kokaji, S.: Auto-
matic Locomotion Design and Experiments for a Modular Robotic System.
IEEE/ASME Transactions on Mechatronics 10(3), 314-325 (2005)

Kennedy, P.J., Osborn, T.R.: A Model of Gene Expression and Regulation in an Ar-
tificial Cellular Organism. J. Complex Systems 13(1), 1-28 (2001)

530

19.

20.

21.

22.

23.

24.

25.

26.

27.

P. Zahadat et al.

Kuo, P.D., Leier, A., Banzhaf, W.: Evolving Dynamics in an Artificial Regulatory
Network Model. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervoés,
J.J., Bullinaria, J.A., Rowe, J.E., Tino, P., Kaban, A., Schwefel, H.-P. (eds.) PPSN
2004. LNCS, vol. 3242, pp. 571-580. Springer, Heidelberg (2004)

Murata, S., Tomita, K., Yoshida, E., Kurokawa, H., Kokaji, S.: Self-reconfigurable
robot-module design and simulation. In: Proc. 6th Int. Conf. on Intelligent Autonom-
ous Systems, Venice, Italy, pp. 911-917 (2000)

Ostergaard, E.H., Kassow, K., Beck, R., Lund, H.H.: Design of the Atron Lattice-
Based Self-Reconfigurable Robot. J. Auton. Robots 21(2), 165-183 (2006)

Stoy, K., Shen, W.M., Will, P.: How to make a self-reconfigurable robot run. In: Proc.
First Int. Joint Conf. on Autonomous Agents and Multiagent Systems (AAMAS
2002), Bologna, Italy, pp. 813-820 (2002)

Transeth, A.A., Pettersen, K.Y., Liljeb, P.: A survey on snake robot modeling and lo-
comotion. J. Robotica, 999-1015 (2009)

Yim, M.: Locomotion with a unit-modular reconfigurable robot. PhD thesis, Depart-
ment of Mechanical Engineering, Stanford University, Stanford, CA (1994)

Yim, M., Shirmohammadi, B., Sastra, J., Park, M., Dugan, M., Taylor, C.J.: Towards
robotic selfreassembly after explosion. In: IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems, San Diego, CA, pp. 2767-2772 (2007)

Zahadat, P., Katebi, S.D.: Tartarus and Fractal Gene Regulatory Networks with Input.
J. Adv. Complex Sys. 11(6), 803-829 (2008)

Zahadat, P., Christensen, D.J., Schultz, U.P., Katebi, S.D., Stoy, K.: Fractal gene
regulatory networks for robust locomotion control of modular robots, In: The 11th Int.
Conf. on Simulation of Adaptive Behavior (2010)

	Sensor-Coupled Fractal Gene Regulatory Networks for Locomotion Control of a Modular Snake Robot
	Introduction and Related Work
	Gene Regulatory Networks
	Biological Inspiration
	Fractals and Gene Regulatory Networks

	Evolving FGRN Local Controllers with Tilt-Sensor Input
	Experimental Results and Discussion
	Evolving Controllers with Unrestricted Access Sensors
	FGRN with Restricted Sensor Information
	Comparison of Behaviors from the Best Evolved Controllers of the Two Experiments

	Conclusions
	References

